
U 2 can U2F



Good morning, welcome, thanks for being 
here
My name is Rob.
There's some places to talk at me. Please do!
These slides and links to anything I mention 
here will be at this URL, so don't stress about 
trying to write anything down
Time for questions at the end

Hello!
Rob N 

Email: robn@fastmail.com
Twitter: @robn
Github: @robn

https://robn.io/u2f-lca-2017



So here's Bono, with his two factors, to help remind us what 
2FA is about
2FA is where, at login, you present two things to establish 
your identity
★ Something you know, that is, your password
★ Something you have, some physical item that only you 
have access to, that has been previously associated with your 
account. That might be something connected to your phone, 
or some physical object
The idea is that if someone gets your password, its not useful 
to them without the second factor.

Two-factor 
authentication



So here's Bono, with his two factors, to help remind us what 
2FA is about
2FA is where, at login, you present two things to establish 
your identity
★ Something you know, that is, your password
★ Something you have, some physical item that only you 
have access to, that has been previously associated with your 
account. That might be something connected to your phone, 
or some physical object
The idea is that if someone gets your password, its not useful 
to them without the second factor.

Two-factor 
authentication

• Something you know

• Password



So here's Bono, with his two factors, to help remind us what 
2FA is about
2FA is where, at login, you present two things to establish 
your identity
★ Something you know, that is, your password
★ Something you have, some physical item that only you 
have access to, that has been previously associated with your 
account. That might be something connected to your phone, 
or some physical object
The idea is that if someone gets your password, its not useful 
to them without the second factor.

Two-factor 
authentication

• Something you know

• Password

• Something you have

• SMS (phone)

• TOTP (phone, standalone)

• Proprietary/enterprise/corporate 
things (standalone)



Two separate stages: registration and authentication
★ At registration a logged-in user connects their 
second factor to their account
★ At login, the service confirms that the logged-in 
user is in possession of the second factor

Two-factor 
authentication



Two separate stages: registration and authentication
★ At registration a logged-in user connects their 
second factor to their account
★ At login, the service confirms that the logged-in 
user is in possession of the second factor

Two-factor 
authentication

• Registration

• Connect a second factor to an 
existing account



Two separate stages: registration and authentication
★ At registration a logged-in user connects their 
second factor to their account
★ At login, the service confirms that the logged-in 
user is in possession of the second factor

Two-factor 
authentication

• Registration

• Connect a second factor to an 
existing account

• Authentication

• Verify that the user has the 
second factor



Let's take a quick look at the two most common 
methods, SMS and TOTP
Using FastMail as an example because we didn't build 
this thing to not show it off

Not a
live demo



So SMS registration is simple. You enter your phone 
number.

SMS registration



The service sends you a code.

SMS registration



You enter the code and the service checks it. If you got it 
right, then we've confirmed the number belongs to you.

SMS registration



Then at login, you start in the normal way, with your 
username and password

SMS authentication



If you got the password right, the service sends a code to the 
registered SMS number. You enter it, and if the code matches, we let 
you in.
This is a pretty straightforward method. Lots of services do this. You've 
probably used it before.

SMS authentication



TOTP is a two-factor method based on a shared 
key and a synchronised clock
Service generates a key, and somehow gives it to 
the user's TOTP client
Usually that's an app on a phone and you can scan 
a QR code to set up
If not, you get to type the key in by hand. That's fun.

TOTP registration



Once your TOTP app has the key, it combines it with the 
time to produce a code
The code is valid for a short time (typically 30 seconds)
(this is a borrowed screenshot from FreeOTP's homepage; 
these apps tend to set a "don't allow screenshots" flag 
and I couldn't be bothered working around it)

TOTP registration



You enter the code from the app, just to 
prove you've got it all set up properly.
And then its all set up

TOTP registration



At login, you enter your username and password
Then you enter the code from the app. The server uses 
the key and timestamp to generate a code too, and if 
they match, you're in

TOTP authentication



TOTP hardware tokens also exist
They come with a pre-programmed key that the vendor 
will give you when you buy the token. Usually by sending 
email or on a piece of paper with the device. Yeah.

TOTP hardware token



You type in the key you got from the vendor, and then its all the same. The two 
sides share a key and can generate the same codes based on the current time

TOTP hardware token



So these all work fine. But they're kind of a mess



2FA assumes that you are the only one with access to the second 
factor
If anyone else has it, then all they need is the password and they've 
got your account, which puts us right back where we started

Your
second factor

is you



But your phone number isn't secure. It's fairly straightforward 
these days for an attacker to intercept messages
TOTP is safer, but the way most people use it still assumes 
that your phone is secured and the key can't be leaked

You are
not a

number



And all of these methods have some vulnerability to phishing and 
keyloggers. They're passive devices; the server receives a code but has 
no way to know where it comes from
If a middleman can intercept the login process, they can still 
impersonate you

Phishing



Also the usability kinda sucks. It all ends up being manually typing strings 
of characters and hoping you got it right and it hasn't timed out yet

Usability



Universal two-factor, or U2F, solves a lot of these problems

Universal
two-factor



★ U2F is an open standard for a two-factor device
Its defined by an industry group called the FIDO (Fast 
IDentity Online) Alliance. All the specs are available to 
read and implement; there's some rules around 
trademarks and certifications.
Hardware available from multiple manufacturers, all 
interop. Or you can make your own.
Hardware profiles for USB, NFC and Bluetooth.
Software implementations for many languages, and not 
hard to do yourself if you have to (I wrote the Perl library)

Universal
two-factor



★ U2F is an open standard for a two-factor device
Its defined by an industry group called the FIDO (Fast 
IDentity Online) Alliance. All the specs are available to 
read and implement; there's some rules around 
trademarks and certifications.
Hardware available from multiple manufacturers, all 
interop. Or you can make your own.
Hardware profiles for USB, NFC and Bluetooth.
Software implementations for many languages, and not 
hard to do yourself if you have to (I wrote the Perl library)

Universal
two-factor

• Open standard for a two-factor 
device

• FIDO Alliance

• Multiple hardware manufacturers

• USB, NFC or Bluetooth

• Multiple server and host 
implementations



★ The main difference between U2F and other things like SMS and 
TOTP is that its an active device. The browser talks to it directly, so it 
can do a lot more than just produce a six-digit code.
Because the device is included in the authentication process, it can do 
real crypto operations to provide some really nice features

Universal
two-factor



★ The main difference between U2F and other things like SMS and 
TOTP is that its an active device. The browser talks to it directly, so it 
can do a lot more than just produce a six-digit code.
Because the device is included in the authentication process, it can do 
real crypto operations to provide some really nice features

Universal
two-factor

• Active device

• Participates directly in 
authentication process

• Public key crypto



★ You can use a single device on multiple accounts, 
across multiple sites
★ The protocol has phishing protection built in
★ There's a way to detect if the device has been cloned
★ And you can get information about the device itself 
and its capabilities, so you can set policies based on 
device type or features

Universal
two-factor



★ You can use a single device on multiple accounts, 
across multiple sites
★ The protocol has phishing protection built in
★ There's a way to detect if the device has been cloned
★ And you can get information about the device itself 
and its capabilities, so you can set policies based on 
device type or features

Universal
two-factor

• One device, multiple sites



★ You can use a single device on multiple accounts, 
across multiple sites
★ The protocol has phishing protection built in
★ There's a way to detect if the device has been cloned
★ And you can get information about the device itself 
and its capabilities, so you can set policies based on 
device type or features

Universal
two-factor

• One device, multiple sites

• Phishing protection



★ You can use a single device on multiple accounts, 
across multiple sites
★ The protocol has phishing protection built in
★ There's a way to detect if the device has been cloned
★ And you can get information about the device itself 
and its capabilities, so you can set policies based on 
device type or features

Universal
two-factor

• One device, multiple sites

• Phishing protection

• Cloning protection



★ You can use a single device on multiple accounts, 
across multiple sites
★ The protocol has phishing protection built in
★ There's a way to detect if the device has been cloned
★ And you can get information about the device itself 
and its capabilities, so you can set policies based on 
device type or features

Universal
two-factor

• One device, multiple sites

• Phishing protection

• Cloning protection

• Device properties



As I said, there's multiple manufacturers
This is my "test lab", which is mostly just a box of 
random devices because I keep buying them
It's actually kind of boring because they all just 
work and don't do anything else
I've got some in my bag if you want to take a look 
at the different sizes and shapes



This one will of particular interest to this audience
This is a U2F Zero device. It's an open-source design by a guy 
called Conor Patrick.
You can go to u2fzero.com and get schematics, board layouts, 
parts lists, firmware source and instructions to build one yourself
I'm all thumbs so I haven't attempted this myself; fortunately he 
did a short production run a few months ago so I grabbed a 
couple to try out. Last I checked there's still some available on 
Amazon.

U2F Zero
https://u2fzero.com/



This is a Tomu
★ Its a tiny ARM computer that fits 
inside your USB port
★ The design is fully open

Tomu
https://tomu.im/



This is a Tomu
★ Its a tiny ARM computer that fits 
inside your USB port
★ The design is fully open

Tomu
https://tomu.im/

• A tiny computer that fits inside your 
USB port

• ARM CPU

• Two buttons

• Two LEDs



This is a Tomu
★ Its a tiny ARM computer that fits 
inside your USB port
★ The design is fully open

Tomu
https://tomu.im/

• A tiny computer that fits inside your 
USB port

• ARM CPU

• Two buttons

• Two LEDs

• Open Hardware Certified



★ This is Tim Ansell. He designed it. He's in the room !
★ The original plan for Tomu is that it would be a U2F 
device
★ But its not there yet. The hardware works, but it 
needs software
★ And that's where you come in!
If this sounds like something you might like to help with, 
go and find Tim. He's got a pile of development units 
and would love to talk to anyone who wants to help get 
the software up and running

Tomu
https://tomu.im/



★ This is Tim Ansell. He designed it. He's in the room !
★ The original plan for Tomu is that it would be a U2F 
device
★ But its not there yet. The hardware works, but it 
needs software
★ And that's where you come in!
If this sounds like something you might like to help with, 
go and find Tim. He's got a pile of development units 
and would love to talk to anyone who wants to help get 
the software up and running

Tomu
https://tomu.im/

• Designed by Tim Ansell



★ This is Tim Ansell. He designed it. He's in the room !
★ The original plan for Tomu is that it would be a U2F 
device
★ But its not there yet. The hardware works, but it 
needs software
★ And that's where you come in!
If this sounds like something you might like to help with, 
go and find Tim. He's got a pile of development units 
and would love to talk to anyone who wants to help get 
the software up and running

Tomu
https://tomu.im/

• Designed by Tim Ansell

• Planned to be a U2F device



★ This is Tim Ansell. He designed it. He's in the room !
★ The original plan for Tomu is that it would be a U2F 
device
★ But its not there yet. The hardware works, but it 
needs software
★ And that's where you come in!
If this sounds like something you might like to help with, 
go and find Tim. He's got a pile of development units 
and would love to talk to anyone who wants to help get 
the software up and running

Tomu
https://tomu.im/

• Designed by Tim Ansell

• Planned to be a U2F device

• Needs software



★ This is Tim Ansell. He designed it. He's in the room !
★ The original plan for Tomu is that it would be a U2F 
device
★ But its not there yet. The hardware works, but it 
needs software
★ And that's where you come in!
If this sounds like something you might like to help with, 
go and find Tim. He's got a pile of development units 
and would love to talk to anyone who wants to help get 
the software up and running

Tomu
https://tomu.im/

• Designed by Tim Ansell

• Planned to be a U2F device

• Needs software

• You can help!



Once you've got your hardware, setup is trivial. You press 
the button...

U2F registration



And its done.

U2F registration



And at login, same.

U2F authentication



I'm not exaggerating; its that simple

U2F authentication



But under the hood, there's lots happening
Which made it kind of hard to know how to start 
explaining it
You don't actually have to know how most of this works 
in order to use or implement U2F
But this is a security conference, so some of you are 
probably interested in the security properties of these 
devices. So I'll try!



We'll start with a simplified view of the authentication flow, 
and then add features until we get to "real" U2F

Authentication
flow



We assume the device has been registered. The server has 
the public key; the device has the private key.
The server generates a challenge. Its just a long random 
string.
The server passes the challenge to the browser, which 
passes it onto the device.
The device signs it, and returns the signature to the browser, 
which in turn passes it on to the server.
The server uses the public key to validate the signature. If it 
checks out, we've confirmed the user has the proper U2F 
device, and can log them in.



This is still vulnerable to phishing though
An active attacker can sit between the user and the 
target service and pass the challenge and signature 
through

Phishing
protection



To protect against this, we get the browser to pass the site 
origin down to the device for inclusion in the signature
The device signs the challenge and origin and passes back the 
signature
The browser passes the signature back to the server, along with 
the origin
The server checks the signature, and can also check the origin. 
If the signature is valid but the origin isn't valid for the site, then 
you know there's a middleman involved and you can take action



We're already doing much better than other 2FA options
So far though, our device only has one key pair. So if we use our 
device on multiple accounts, the same public key will be stored on 
all of them, and the server operator knows they're all the same user.
Similarly, if the device was used on multiple services, the same 
public key would be present on all of them, making it possible for a 
user to be tracked across services

Application-
specific
keys



So we give the device the ability to create keypairs, and give 
them a name. Both the server and the device contribute part of 
the name. The server part is the "application id", and the device 
part is the "handle".
So now, the server starts by generating a challenge, and sends 
that to the device with the name of the key it should use to sign it 
with.
The browser adds the origin and passes all that along to the 
device
The device uses the key name, that is, the app id and handle, to 
look up the correct private key
And then the rest proceeds as before. The challenge is signed 
and returned to the browser, then to the server
The server looks up the public key, and does its checks



So one possible attack is that you put your device down, someone 
picks it up, uses some magical method to make a copy of its internal 
state, and now they've got a working second factor for your account
This isn't a likely mode of attack for most people, but it is for some, and 
its nice to know we can do something about it

Cloning
protection



Here we add a counter to the device. Each time the device is 
asked to sign something, it increments the counter and includes it 
in the signature
The server stores the last counter value it saw
When a signature arrives, the server compares the device counter 
with the stored one. If it isn't greater than the stored one, then we 
know that this is a cloned device, and we can take action



That was the entire authentication process
And now we know all the values the server and the 
device need to exchange during registration, so we can 
finally look at that

Registration
flow



Send a challenge and the app id as usual
Browser adds the origin
The device generates a keypair and handle,then stores the 
private key with the app id and handle for lookup later during 
auth. Then it signs the challenge with the attestation cert and 
returns it with the public key and handle.
The server validates the signature and origin as normal and if it 
all checks out, stores the handle and public key with the user



I mentioned something called an "attestation certificate" 
just then.
Its a certificate shared by all devices of a particular 
model or production batch. Its used to identify the device
The registration challenge is signed with its private key, 
and its returned to the server with the signature

Attestation
certificate



This is a dump of part of the certificate from a Yubikey Plus
Its a very boring X509 cert, there's nothing special about it
You can use it to positively identify the device model
Useful if you want to restrict access by device characteristics. 
For example, you could order a custom batch of devices 
which would all share a single certificate. You give those to 
your staff and make it so admin functions are only available 
to sessions that authenticated with one of those devices

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 776137165 (0x2e42e9cd)
        Signature Algorithm: sha256WithRSAEncryption
        Issuer: CN=Yubico U2F Root CA Serial 457200631
        Validity
            Not Before: Aug  1 00:00:00 2014 GMT
            Not After : Sep  4 00:00:00 2050 GMT
        Subject: CN=Yubico U2F EE Serial 776137165
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
            EC Public Key:
                pub:
                    04:49:ba:3d:d4:9c:3b:a1:5b:d5:b8:75:8d:ef:db:
                    49:2e:2a:8c:3e:3f:70:02:c4:4d:5d:d4:83:3f:9f:
                    c0:ce:40:9d:91:37:4a:f0:51:7a:f2:00:6a:ba:39:
                    c2:fb:73:1b:36:71:a0:ce:5c:e9:da:c1:84:b5:61:
                    95:b9:70:cd:4c
                ASN1 OID: prime256v1



So that's all the internals, which you mostly don't have to 
care about
What you do want to know is how to actually implement 
this

Implementation
details



★ There's server libraries for all the normal languages
★ They all do roughly the same thing - create challenges 
and verify the two different kinds of responses

Serverland



★ There's server libraries for all the normal languages
★ They all do roughly the same thing - create challenges 
and verify the two different kinds of responses

Serverland
• Perl, Ruby, Python, PHP, Java, C#, C, Go, Javascript...



★ There's server libraries for all the normal languages
★ They all do roughly the same thing - create challenges 
and verify the two different kinds of responses

Serverland
• Perl, Ruby, Python, PHP, Java, C#, C, Go, Javascript...

• Provide three main functions

• Generate a challenge

• Verify a registration response

• Verify an authentication response



★ You're gonna need Javascript. There's no way around that; you have to tell 
the browser to send stuff down to the U2F device, and take action when the 
response comes back. But its not a lot of Javascript; you can do it in a few lines.
★ Browser support is good, but not great. Anything Chrome-ish should work 
fine. Firefox are working on native support, but there's a good extension 
available.
Microsoft have said they're looking at it for Edge, but haven't committed. Apple 
remain silent, as usual.
★ On mobile, it works on Android if you use Chrome, and you have Google's 
Authenticator app, and you have an NFC-based device like a Yubikey Neo. I 
haven't seen or heard anything about any other combinations working

Browserland



★ You're gonna need Javascript. There's no way around that; you have to tell 
the browser to send stuff down to the U2F device, and take action when the 
response comes back. But its not a lot of Javascript; you can do it in a few lines.
★ Browser support is good, but not great. Anything Chrome-ish should work 
fine. Firefox are working on native support, but there's a good extension 
available.
Microsoft have said they're looking at it for Edge, but haven't committed. Apple 
remain silent, as usual.
★ On mobile, it works on Android if you use Chrome, and you have Google's 
Authenticator app, and you have an NFC-based device like a Yubikey Neo. I 
haven't seen or heard anything about any other combinations working

Browserland
• Javascript



★ You're gonna need Javascript. There's no way around that; you have to tell 
the browser to send stuff down to the U2F device, and take action when the 
response comes back. But its not a lot of Javascript; you can do it in a few lines.
★ Browser support is good, but not great. Anything Chrome-ish should work 
fine. Firefox are working on native support, but there's a good extension 
available.
Microsoft have said they're looking at it for Edge, but haven't committed. Apple 
remain silent, as usual.
★ On mobile, it works on Android if you use Chrome, and you have Google's 
Authenticator app, and you have an NFC-based device like a Yubikey Neo. I 
haven't seen or heard anything about any other combinations working

Browserland
• Javascript

• Browser support

• Chromium-based browsers (Chrome, Opera) via u2f-api.js

• Firefox via extension (native Real Soon Now™)

• ...



★ You're gonna need Javascript. There's no way around that; you have to tell 
the browser to send stuff down to the U2F device, and take action when the 
response comes back. But its not a lot of Javascript; you can do it in a few lines.
★ Browser support is good, but not great. Anything Chrome-ish should work 
fine. Firefox are working on native support, but there's a good extension 
available.
Microsoft have said they're looking at it for Edge, but haven't committed. Apple 
remain silent, as usual.
★ On mobile, it works on Android if you use Chrome, and you have Google's 
Authenticator app, and you have an NFC-based device like a Yubikey Neo. I 
haven't seen or heard anything about any other combinations working

Browserland
• Javascript

• Browser support

• Chromium-based browsers (Chrome, Opera) via u2f-api.js

• Firefox via extension (native Real Soon Now™)

• ...

• Mobile

• Android + Chrome + Google Authenticator + NFC



This is how simple a registration request can be. Pass down the app id 
and challenge, and then in the callback, send the results back to the 
server
I don't usually write Javascript, so please forgive me if this is actually 
garbage. At least I put in error checks

Browserland
u2f.register(location.origin, // appId
             [{ challenge: '...', version: 'U2F_V2' }],
             [],
             function (r) {
               if (r.errorCode) {
                 alert("something bad happened: "+r.errorCode);
                 return;
               }
               // send r.registrationData and r.clientData
               // to server via XHR, form POST, etc
             }
            );



And signing is very similar. We add the key handle, that's 
all
Your own code will be much smarter than this. I just 
wanted to show you that its not hard

Browserland
u2f.sign(location.origin, // appId
         [{ challenge: '...', version: 'U2F_V2' }],
         [{ keyHandle: '...', version: 'U2F_V2' }],
         function (r) {
           if (r.errorCode) {
             alert("something bad happened: "+r.errorCode);
             return;
           }
           // send r.keyHandle, r.signatureData and r.clientData
           // to server via XHR, form POST, etc
         }
        );



Here's a cool thing - you might not need a 
browser
U2F devices are generic USB HID class devices
So anything on the desktop can use them, not 
just the browser

Browserless



For that, you want libu2f-host
It's a C library that implements the host and 
USB side of things

libu2f-host



I only know of one thing doing this - pam-u2f
It plugs into the Unix authentication stack, so you can 
do things like unlock your laptop with your U2F device

pam-u2f



So at this point some of you might be thinking that you'd like to 
try this out but you have to go and buy a thing and that's a 
bunch of hassle
I've got you covered
This is a Nitrokey U2F device. It comes on a little card. You 
punch it out and fold the tab over to make the USB bit thick 
enough to plug in. There's a little dab of glue on the back to hold 
it all together
I've got 50 of these to give away
Use it to secure your FastMail, Github, Dropbox, Google, etc 
account
Or use it to learn how to add support to your service or app
One condition: you have to tweet, blog or otherwise say 
something public about what you did. We're trying to make it 
more visible
Come and find me later to get one and lets talk about it

Bonus prize round!



So that's it! Now you know how to add usable and secure 
two-factor auth to your app

U 2 can U2F!



★ U2F is an open standard
★ It's secure
★ It's easy for users to use
★ Lots of cheap hardware 
available, or you can build your own
★ And its easy to implement

U 2 can U2F!



★ U2F is an open standard
★ It's secure
★ It's easy for users to use
★ Lots of cheap hardware 
available, or you can build your own
★ And its easy to implement

U 2 can U2F!

• U2F is an open standard



★ U2F is an open standard
★ It's secure
★ It's easy for users to use
★ Lots of cheap hardware 
available, or you can build your own
★ And its easy to implement

U 2 can U2F!

• U2F is an open standard

• Secure



★ U2F is an open standard
★ It's secure
★ It's easy for users to use
★ Lots of cheap hardware 
available, or you can build your own
★ And its easy to implement

U 2 can U2F!

• U2F is an open standard

• Secure

• Easy to use



★ U2F is an open standard
★ It's secure
★ It's easy for users to use
★ Lots of cheap hardware 
available, or you can build your own
★ And its easy to implement

U 2 can U2F!

• U2F is an open standard

• Secure

• Easy to use

• Lots of hardware to choose from, or 
build your own



★ U2F is an open standard
★ It's secure
★ It's easy for users to use
★ Lots of cheap hardware 
available, or you can build your own
★ And its easy to implement

U 2 can U2F!

• U2F is an open standard

• Secure

• Easy to use

• Lots of hardware to choose from, or 
build your own

• Simple to implement



Questions?


