
Note
SOUND CHECK

 quiz
tiny VMs for kernel development
Rob Norris, Klara Inc.

Hello!
 Australian

Klara, Inc.
OpenZFS developer
Recovering Linux sysadmin
FreeBSD non-committer

robn.au/quizquiz: tiny VMs for kernel development

exploratory
programming

robn.au/quizquiz: tiny VMs for kernel development

Note
So I would characterise myself as an exploratory programmer. Most of the time, I don't have a very plan at the start; I just try stuff and mess around until I start to understand the shape of the problem and have ideas about how to solve it. I know this doesn't work well for everyone, but it seems to work well for me.

When I'm in this mode, I'm not being particular defensive. I rarely have error checks, I don't think very hard about safety, or locking, or other production must-haves. So my programs hang, crash, chew up all the memory, and other horrors.

For a normal program, this hardly matters. If it crashes, we fix it and keep going.

Note
Basically, this is what I want. I use this two-up window style for all my programming, and have for years. On the right, code, and on the left, running it, experimenting, playing, etc).

But then last year I started working full time on OpenZFS, which is a kernel subsystem. And it's very hard to take that kind of approach there.

 exploratory kernel programming
every crash is a reboot
every deadlock is a reboot
boot times are slow
unclean shutdown damages filesystems
traditional VMs are a pain to manage if you're blowing them up all the time
I get bored and distracted very easily

robn.au/quizquiz: tiny VMs for kernel development

Note
This is just a super hassle, and I knew it would drive me crazy, so I started to think about what I wanted to be able to do.

 Big thoughts
We run programs in modified environments all the time:

alternate environment: env VAR=val /some/program
alternate filesystem: chroot /some/path /some/program

alternate language: bash /some/program.sh , perl /some/program.pl

If you squint:
a hypervisor is just a program that runs a kernel
a kernel is just a program that runs a program called init

init is just a program that runs another program

robn.au/quizquiz: tiny VMs for kernel development

Note
So I used my extremely large brain, and made some observations.

 Big thoughts
$ zfs-kernel-runner my-zfs-test-script.sh

robn.au/quizquiz: tiny VMs for kernel development

Note
So really, I just need to write this zfs-kernel-runner thing.

Simple matter of programming, right.

 Squad goals
Feels just like another program

Output to stdout, so we can grep it
Ctrl-C will kill it

Gets into the test program in a couple of seconds
Completely gone without a trace when it completes
Minimal extra typing
Get new code and test programs direct from the host filesystem

robn.au/quizquiz: tiny VMs for kernel development

Note
Ok, there is no squad because I work alone in my isolated timezone. UTC+10 represent.

I don't want anything special, just a program that acts like a program.

 quiz

https://github.com/robn/quiz

https://github.com/robn/quiz
Note
And so I wrote that runner thing, and I named it quiz.

 quiz
QEMU microvm profile

Custom build of Linux kernel
Minimal Debian userspace
Custom boot process
9pfs+overlayfs to build the root filesystem
Run profiles to add devices or facilities to this run
OpenZFS build support

robn.au/quizquiz: tiny VMs for kernel development

Note
In the finest tradition, quiz is a collection of bash scripts. It pulls together a few things.

 QEMU microvm profile
A minimalist /x86_64amd64 machine model

yes: ISA bus, LAPIC, IOAPIC, clock, virtio-mmio slots
no: PCI bus, ACPI, option ROMs, ISA serial, PIC, PIT, RTC

Fast boot: nothing to discover, nothing to initialise
Known, fixed, minimal set of devices

robn.au/quizquiz: tiny VMs for kernel development

 Custom kernel build
Bare minimum device support

no PCI bus? no PCI support needed!
no time lost enumerating bus

All drivers built into kernel, no modules
No initrd required to boot!

robn.au/quizquiz: tiny VMs for kernel development

 Minimal Debian userspace
minbase variant: "required" packages + package manager

(sort of like base.tgz)

plus useful tools for this task:
performance and profiling: perf , bpftrace , fio , gdb , strace , blktrace ...
block device construction: gdisk , dmsetup , cryptsetup , ...

OpenZFS test suite support: ksh , ...

Boot support: tini , udev , kmod , ...

robn.au/quizquiz: tiny VMs for kernel development

 Custom boot process
init1 : first stage; build the root filesystem, pivot

init2 : second stage; prepare environment, run tini

tini : bare-minimum PID 1, run the test program

robn.au/quizquiz: tiny VMs for kernel development

 demo #1

basic operation

Note
demo 1: basic operation

>> standalone run, get a shell

$./quiz
uname -a
df
top
ctrl-c

>> run a command, it runs it and exits

$./quiz uname -a

>> or run a command and get a shell when it finishes

$./quiz -S uname -a

>> output is just stdout, so you can do normal things

$./quiz dmesg | grep e820

>> create files, if you like

$./quiz
touch /foo
ls -l /foo

>> next run, file is gone; everything was destroyed

$./quiz
ls -l /foo

 init1 : filesystem construction
base system image: ext2

Debian minbase + extras

init1 is built into this image

quiz init dir: host dir via 9pfs
script fragments, config, etc created by quiz script for this run

quiz system dir: host dir via 9pfs
install target for OpenZFS, built outside

quiz user dir: host dir via 9pfs
test scripts and other random stuff I want inside

top: tmpfs
so writes inside the VM can work, and disappear later

robn.au/quizquiz: tiny VMs for kernel development

 init2 : prepare environment
set the hostname
get /dev nodes up (udev)

mount debug filesystems
exec tini as PID 1, which runs either a shell or the requested program

robn.au/quizquiz: tiny VMs for kernel development

 tini : the littlest PID 1 that could
https://github.com/krallin/tini

runs a program
reaps zombies
provides default signal handlers
the "standard" PID 1 for containers

robn.au/quizquiz: tiny VMs for kernel development

https://github.com/krallin/tini

 quiz: profiles
add extra stuff to this run
profiles can:

run stuff on the host, before the VM starts
run stuff in the guest, before the user program starts
provide extra files that will be included in the guest

robn.au/quizquiz: tiny VMs for kernel development

 quiz: zfs profile
host: run depmod to ensure module linkage is correct
guest: install zfs module

robn.au/quizquiz: tiny VMs for kernel development

 quiz: memdev profile
guest: create small memory-backed block devices

robn.au/quizquiz: tiny VMs for kernel development

 quiz: blockdev profile
host:

create 1G sparse files as block device backing
extend qemu command line to attach them as virtio-blk devices

robn.au/quizquiz: tiny VMs for kernel development

 quiz: ztest profile
files: provide "no-op" variants of sudo and id to work around ZTS assumptions

robn.au/quizquiz: tiny VMs for kernel development

 demo #2

profiles

Note
demo 2: profiles

>> memdev

$./quiz -p zfs,memdev 'zpool create tank loop0 loop1 && zpool status'

>> test suite run

$./quiz -p zfs,ztest '/usr/local/share/zfs/zfs-tests.sh -T zpool_list'

 OpenZFS build support

robn.au/quizquiz: tiny VMs for kernel development

 OpenZFS build support
The dream:

$./autogen.sh
$./configure --prefix=/path/to/quiz/system
$ make -j6
$ make install

robn.au/quizquiz: tiny VMs for kernel development

 OpenZFS build support
The reality:

$./autogen.sh
$./configure \
 --with-linux=/path/to/quiz/build/kernel/linux-x.y.z \
 --with-linux-obj=/path/to/quiz/build/kernel/linux-x.y.z \
 --prefix=/usr/local \
 --disable-sysvinit \
 --disable-systemd \
 --disable-pam \
 'lt_cv_sys_lib_dlsearch_path_spec=/lib /usr/lib /lib/i686-linux-gnu /usr/lib/x86_64-linux-gnu' \
$ make -j6
$ make install DESTDIR=/path/to/quiz/system

robn.au/quizquiz: tiny VMs for kernel development

 OpenZFS build support
For now:

$./autogen.sh
$ quiz-build-zfs configure
$ make -j6
$ quiz-build-zfs make install

robn.au/quizquiz: tiny VMs for kernel development

 Kernel features
multiple kernels, selectable with -k

oneshot kernel builds with changed options
GCC and LLVM/Clang variants

robn.au/quizquiz: tiny VMs for kernel development

 Plans and dreams
multiple architectures (proper ZFS big-endian testing)
writable host mount (save logs and build artifacts)
profiles for building block devices out of dm stacks
remote tmux (mess with program run live)
multiple instances, for each OpenZFS checkout
and...

robn.au/quizquiz: tiny VMs for kernel development

 FreeBSD support

robn.au/quizquiz: tiny VMs for kernel development

 FreeBSD guest support
FIRECRACKER kernel config

Cross-build on Linux host
Missing: 9pfs (coming soon!)
Missing: overlayfs (coming soon?)

robn.au/quizquiz: tiny VMs for kernel development

 FreeBSD host support
Needs hypervisor support, either:

qemu needs hardware acceleration

bhyve needs support for one-shot, diskless Linux VMs

robn.au/quizquiz: tiny VMs for kernel development

 Direct Linux boot

robn.au/quizquiz: tiny VMs for kernel development

 Direct Linux boot
$ qemu-system-x86_64 \
 -nodefaults -no-user-config -nographic \
 -enable-kvm -cpu host -smp 2 -m 1G \
 -serial stdio \
 -kernel /boot/vmlinuz-6.1.0-21-amd64 \
 -append 'console=ttyS0'

robn.au/quizquiz: tiny VMs for kernel development

 Direct Linux boot
$ qemu-system-x86_64 -nodefaults -no-user-config -nographic \
 -enable-kvm -cpu host -smp 2 -m 1G -serial stdio \
 -kernel /boot/vmlinuz-6.1.0-21-amd64 -append 'console=ttyS0'
[0.000000] Linux version 6.1.0-21-amd64 (debian-kernel@lists.debian.org)
 (gcc-12 (Debian 12.2.0-14) 12.2.0, GNU ld (GNU Binutils for Debian) 2.40)
 #1 SMP PREEMPT_DYNAMIC Debian 6.1.90-1 (2024-05-03)
[0.000000] Command line: console=ttyS0
[0.000000] BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
[0.000000] BIOS-e820: [mem 0x000000000009fc00-0x000000000009ffff] reserved
...
[0.511354] List of all partitions:
[0.511853] No filesystem could mount root, tried:
[0.511854]
[0.512705] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)
[0.513862] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.0-21-amd64 #1 Debian 6.1.90-1
[0.514940] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
 BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[0.516269] Call Trace:
[0.516619] <TASK>
[0.516932] dump_stack_lvl+0x44/0x5c
[0.517450] panic+0x118/0x2f4
[0.517932] mount_block_root+0x1d3/0x1e6
[0.518516] prepare_namespace+0x136/0x165
[0.519078] kernel_init_freeable+0x25c/0x286
[0.519633] ? rest_init+0xd0/0xd0
[0.520088] kernel_init+0x16/0x130
[0.520571] ret_from_fork+0x1f/0x30
[0.521059] </TASK>
[0.521486] Kernel Offset: 0x2fe00000 from 0xffffffff81000000
 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
[0.522815] ---[end Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)]---

 bhyve: direct Linux boot
$ bhyve -DPHA -c 2 -m 1G \
 -s 0,hostbridge -s 1,lpc -l com1,stdio \
 ...

robn.au/quizquiz: tiny VMs for kernel development

 bhyve: boot process
allocates a big chunk of memory
maps a "BIOS" boot ROM device into that space
points the first CPU at it
standard PC boot: find boot device, load the bootloader, ...

robn.au/quizquiz: tiny VMs for kernel development

 bhyve: boot process
allocates a big chunk of memory
puts stuff in memory
points the first CPU at it
standard PC boot: find boot device, load the bootloader, ...

robn.au/quizquiz: tiny VMs for kernel development

 bhyve: boot process
allocates a big chunk of memory
puts stuff in memory
sets CPU state to match
standard PC boot: find boot device, load the bootloader, ...

robn.au/quizquiz: tiny VMs for kernel development

 bhyve: boot process
allocates a big chunk of memory
puts stuff in memory
sets CPU state to match
go!

robn.au/quizquiz: tiny VMs for kernel development

 bhyve: loader infrastructure
$ bhyve -DPHA -c 2 -m 1G \
 -s 0,hostbridge -s 1,lpc -l com1,stdio \
 -o loader.name=linux \
 -o loader.kernel=vmlinuz-6.1.0-21-amd64 \
 -o loader.cmdline='console=ttyS0'

robn.au/quizquiz: tiny VMs for kernel development

 bhyve: loader infrastructure
$ bhyve -DPHA -c 2 -m 1G -s 0,hostbridge -s 1,lpc -l com1,stdio \
 -o loader.name=linux -o loader.kernel=vmlinuz-6.1.0-21-amd64 -o loader.cmdline='console=ttyS0'
[0.000000] Linux version 6.1.0-21-amd64 (debian-kernel@lists.debian.org)
 (gcc-12 (Debian 12.2.0-14) 12.2.0, GNU ld (GNU Binutils for Debian) 2.40)
 #1 SMP PREEMPT_DYNAMIC Debian 6.1.90-1 (2024-05-03)
[0.000000] Command line: console=ttyS0
[0.000000] BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009ffff] usable
[0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000003fffffff] usable
...
[0.543927] List of all partitions:
[0.544070] No filesystem could mount root, tried:
[0.544071]
[0.544329] Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)
[0.544617] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.0-21-amd64 #1 Debian 6.1.90-1
[0.544862] Hardware name: FreeBSD BHYVE/BHYVE, BIOS 14.0 10/17/2021
[0.545056] Call Trace:
[0.545139] <TASK>
[0.545212] dump_stack_lvl+0x44/0x5c
[0.545332] panic+0x118/0x2f4
[0.545436] mount_block_root+0x1d3/0x1e6
[0.545565] prepare_namespace+0x136/0x165
[0.545695] kernel_init_freeable+0x25c/0x286
[0.545837] ? rest_init+0xd0/0xd0
[0.545949] kernel_init+0x16/0x130
[0.546062] ret_from_fork+0x22/0x30
[0.546180] </TASK>
[0.547128] Kernel Offset: 0x32800000 from 0xffffffff81000000
 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
[0.547455] ---[end Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(0,0)]---

 Boot protocol
A kernel is just a program
The CPU jumps to it and starts executing

What is the memory layout?
Where are the basic devices (clocks, buses, ...)
Where are the commandline args?
Where is the support code? (initrd, loader, drivers, ...)

robn.au/quizquiz: tiny VMs for kernel development

 Linux x86 64-bit boot protocol
Copy header template from image
Sanity checks

Magic number
Protocol version (2.02+)

Compute compressed kernel offset within image
Select memory location, load compressed kernel
Select memory location, copy command line in
Select memory location, load initrd image (if required)

robn.au/quizquiz: tiny VMs for kernel development

 Linux x86 64-bit boot protocol
Fill out header

Set loader type ("undefined" 0xff)
Set commandline start/length
Set initrd start/length (if required)
Install e820 memory map

robn.au/quizquiz: tiny VMs for kernel development

 Linux x86 64-bit boot protocol
Setup registers

GDT : 4G each CODE , DATA , TSS

IDT : zero

CS : GDT[CODE]

DS , ES , FS , GS , SS : GDT[DATA]

TR : GDT[TSS]

PDE , PDPTE , PML4 : identity page table

CR0 , CR3 , CR4 , EFER : 64-bit long mode, paging enabled

EFLAGS : interrupts disabled

RIP : 64-bit entry point: kernel load address + 0x200

RSI : header start

RSP , RBP : initial stack

 bhyve: multiboot2 loader
$ bhyve -DPHA -c 2 -m 1G -s 0,hostbridge -s 1,lpc -l com1,stdio \
 -o loader.name=multiboot2 -o loader.image=hobby-os
 ...

robn.au/quizquiz: tiny VMs for kernel development

 bhyve quiz: TODO
loader infrastructure + Linux loader: aiming for FreeBSD 15
unprivileged bhyve: 15
anonymous VMs: ...?
9pfs: 15
overlayfs: ...?

robn.au/quizquiz: tiny VMs for kernel development

Note
https://asciinema.org/a/FuXehcd5MkWb7LE15s1VT2ugK

 QEMU: bhyve/vmm acceleration
QEMU currently uses software CPU acceleration on FreeBSD
vmm.ko (bhyve kernel component) fundamentally incompatible

QEMU wants to allocate and initialise memory and map devices itself, then
hand that to the accelerator
vmm.ko expects to allocate memory and map devices, and give them to

userspace to use
So...?

Remake vmm.ko the "right" way?

Port nvmm(4) from NetBSD?

Just add more devices and things to bhyve so we don't need qemu ?

robn.au/quizquiz: tiny VMs for kernel development

kernels are
just programs
do not listen
to their bulls🞄🞄t

robn.au/quizquiz: tiny VMs for kernel development

