
Note
SOUND CHECK

 quiz
tiny VMs for kernel development
Rob Norris

Hello!
OpenZFS developer
Recovering Linux sysadmin
FreeBSD non-committer

robn.au/quiz-25 quiz: tiny VMs for kernel development

Support
independent
software
development

Note
Just a quick PSA. If you're in a position to, please support independent software development.

If you value the existence of free and open-source software that truly belongs to the community and not to a company, then you need to make sure the people that can do that work can also afford to eat, enjoy their life and support their families.

Feel free to grab me outside if you'd like to talk more about this!

exploratory
programming

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
So I would characterise myself as an exploratory programmer. Most of the time, I don't have a very plan at the start; I just try stuff and mess around until I start to understand the shape of the problem and have ideas about how to solve it. I know this doesn't work well for everyone, but it seems to work well for me.

When I'm in this mode, I'm not being particular defensive. I rarely have error checks, I don't think very hard about safety, or locking, or other production must-haves. So my programs hang, crash, chew up all the memory, and other horrors.

For a normal program, this hardly matters. If it crashes, we fix it and keep going.

Note
Basically, this is what I want. I use this two-up window style for all my programming, and have for years. On the right, code, and on the left, running it, experimenting, playing, etc).

But then a couple of years ago I started working full time on OpenZFS, which is a kernel subsystem. And it's very hard to take that kind of approach there.

 exploratory kernel programming
every crash is a reboot
every deadlock is a reboot
boot times are slow
unclean shutdown damages filesystems
traditional VMs are a pain to manage if you're blowing them up all the time
I get bored and distracted very easily

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
[bullets]

This is just a super hassle, and I knew it would drive me crazy, so I started to think about what I wanted to be able to do.

 Big thoughts
We run programs in modified environments all the time:

alternate environment: env VAR=val /some/program
alternate filesystem: chroot /some/path /some/program

alternate language: bash /some/program.sh , perl /some/program.pl

If you squint:
a VM (hypervisor) is just a program that runs a kernel
a kernel is just a program that runs a program called init

init is just a program that runs another program

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
[bullets]

So I used my extremely large brain, and made some observations.

 Big thoughts
$ zfs-kernel-runner my-zfs-test-script.sh

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
So really, I just need to write this zfs-kernel-runner thing.

Simple matter of programming, right.

 Goals
Feels just like another program

Output to stdout, so we can grep it
Ctrl-C will kill it

Gets into the test program in a couple of seconds
Completely gone without a trace when it completes
Minimal extra typing
Get new code and test programs direct from the host filesystem

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
[bullets]

I don't want anything special, just a program that acts like a program.

 quiz

https://github.com/robn/quiz

https://github.com/robn/quiz
Note
And so I wrote that runner thing, and I named it quiz.

 demo

basic operation

0:00 / 0:28

Note
Just a simple standalone run. Get a shell, run some basic commands. As you see, it's just a simple VM.

0:00 / 0:10

Note
If we offer a command directly, it'll spin up the VM, run it, and shut it down.

0:00 / 0:12

Note
The VM output goes onto stdout, so we can pipe it elsewhere.

0:00 / 0:27

Note
And we can create files and data.

But on the next run, they're gone. No traces left behind.

 quiz
QEMU microvm machine model

Custom build of Linux kernel
Minimal Debian userspace
Custom boot process
9pfs+overlayfs to build the root filesystem
Profiles to add devices or facilities to this run
OpenZFS build support
Kernel build support

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
In the finest tradition, quiz is a collection of bash scripts. It pulls together a few things.

[bullets]

 MicroVM?
QEMU "machine model"

the kind of "whole computer" being emulated
Architecture, CPU model, board type, core devices and controllers

microvm : A minimalist x86_64 / amd64 machine model
yes: PCI bus, ISA bus, LAPIC, IOAPIC, clock, virtio-mmio/pci slots
no: BIOS, ACPI, option ROMs, ISA serial, PIC, PIT, RTC

Fast boot: nothing to discover, nothing to initialise
Known, fixed, minimal set of devices

robn.au/quiz-25 quiz: tiny VMs for kernel development

 Custom kernel build
Bare minimum device support

No need to initialise devices that aren't there
Or enumerate buses that aren't there
Or discover devices when we already know where they are

All drivers built into kernel, no modules
No initrd required to boot!

robn.au/quiz-25 quiz: tiny VMs for kernel development

 Minimal Debian userspace
minbase variant: "required" packages + package manager

plus useful tools for this task:
performance and profiling: perf , bpftrace , fio , gdb , strace , blktrace ...
block device construction: gdisk , dmsetup , cryptsetup , ...

OpenZFS test suite support: ksh , ...

Boot support: tini , udev , kmod , ...

robn.au/quiz-25 quiz: tiny VMs for kernel development

 Custom boot process
init1 : first stage; build the root filesystem, pivot

init2 : second stage; prepare userspace, profile init

tini : bare-minimum PID 1

rc : run control, the "user interface" to the run

run : the actual test program or other thing to run

robn.au/quiz-25 quiz: tiny VMs for kernel development

 init1 : filesystem construction

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Ok, so lets look at how the root filesystem is constructed.

 init1 : filesystem construction
Filesystem 1K-blocks Used Available Use% Mounted on
overlay 8198812 144 8198668 1% /

Linux overlay filesystem
build a "virtual" filesystem by layering other filesystems over the top
file not found at one layer, try the next one

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
In the demo, it looked like this.

This is an "overlay" filesystem. You create one by layering parts of other fileystems on top of each other.

quiz has a bunch of filesystems it combines!

 init1 : filesystem construction
base system image: ext2

Debian minbase + extras + init1

quiz kernel dir: 9pfs (host dir)
compiled kernels, debugging symbols, system map

quiz system dir: 9pfs (host dir)
install target for OpenZFS, built outside

quiz init dir: 9pfs (host dir)
script fragments, config, etc created by quiz script for this run

quiz user dir: 9pfs (host dir)
test scripts and other random stuff I want inside

top: tmpfs
writes inside the VM go here, and disappear later

Note
[bullets]

* base system
* host dirs, exposed via 9pfs (like nfs, but lighter, no network required)
* loosely tied to "lifetime"

So we mount all these pieces.

 init1 : filesystem construction
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 820625 753572 25660 97% /
quiz-kernel 440391552 397204608 43186944 91% /mnt/quiz-kernel
quiz-system 440391552 397204608 43186944 91% /mnt/quiz-system
quiz-init 440391552 397204608 43186944 91% /mnt/quiz-init
quiz-user 440391552 397204608 43186944 91% /mnt/quiz-user
tmpfs 8198812 0 8198812 0% /mnt/top

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Comes out like this.

 init1 : filesystem construction
mkdir /mnt/top/upper /mnt/top/work

mount --bind / /mnt/lower

mount -t overlay overlay
 -o lowerdir=/mnt/quiz-init:
 /mnt/quiz-user:
 /mnt/quiz-kernel:
 /mnt/quiz-system:
 /mnt/lower,
 upperdir=/mnt/top/upper,
 workdir=/mnt/top/work
 /mnt/newroot

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Then you do this mad thing to build the overlay.

I'm not going to try to explain it. I only roughly understand it. Its kinda weirdly designed in my opinion, but whatever, we're here to get a job done.

 init1 : filesystem construction
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 820625 753572 25660 97% /
quiz-init 440391552 397204608 43186944 91% /mnt/quiz-init
quiz-user 440391552 397204608 43186944 91% /mnt/quiz-user
quiz-kernel 440391552 397204608 43186944 91% /mnt/quiz-kernel
quiz-system 440391552 397204608 43186944 91% /mnt/quiz-system
tmpfs 8198812 0 8198812 0% /mnt/overlay
overlay 8198812 0 8198812 0% /mnt/newroot

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
That leaves us with this new filesystem that combines all the other filesystems.

We then "pivot" into it to make it the new root for the entire system, unmount all the other pieces, and now we have our root filesystem.

 init2 : prepare environment
set the hostname
get /dev nodes up (udev)

mount debug filesystems (tracefs , debugfs , configfs , bpf , ...)

do profile init
exec tini as PID 1

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Once we have a working filesystem, we can move into the rest of the setup. This
is all pretty straightforward.

I'll get to profiles shortly.

 tini : the littlest PID 1 that could
https://github.com/krallin/tini

runs a program
reaps zombies
provides default signal handlers
the "standard" PID 1 for containers

robn.au/quiz-25 quiz: tiny VMs for kernel development

https://github.com/krallin/tini

 rc : run control
the "user interface" for a quiz run
what you see on your screen
where your keypresses go

raw : kernel and program output on stdio, Ctrl-C kills the VM

tmux : everything inside a tmux session, interactive & exploratory

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
[bullets]

You've already seen raw. I'll show tmux soon.

run
robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
And then we do the thing!

But just as there's no single kind of computer that works for every job, so it is with VMs. Sometimes you need a special bit of hardware, or a special program, that you wouldn't want to put in _every_ computer.

 profiles
robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
quiz's answer to that is "profiles".

 profiles
chosen via commandline option
add extra stuff to this run
profiles can:

run stuff on the host, before the VM starts (quiz)
run stuff in the guest, before the user program starts (init2)

provide extra files that will be included in the guest

robn.au/quiz-25 quiz: tiny VMs for kernel development

 profile: zfs
init2 : install zfs module into kernel

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
This is the simplest one. It just loads the OpenZFS kernel module, so that every test program doesn't have to do it and can get straight into using it.

 profile: memdev
init2 : create some small (100M) memory-backed block devices (/dev/loopX)

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
If we're testing filesystems, then we need some block devices to test against. This creates some.

 profile: blockdev
quiz :

create some 1G sparse files as block device backing
extend qemu command line to attach them as virtio-blk devices

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Sometimes we need bigger block devices, big enough that they won't fit in memory (or will, but would melt my laptop or something.

So create some backing files on the host filesystem, and pass them through to the VM.

 profile: ztest
files: provide "no-op" variants of sudo and id to work around ZTS assumptions

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
For historical reasons, the OpenZFS test suite refuses to run as root, and will check to make sure its not.

But, that means I have to have a non-root user in this throwaway VM, which makes no sense.

So, I install two shell scripts, `sudo` and `id` into the VM, that lie about what's happening so that test runner believes it's running as a regular user and not root.

 demo

profiles

0:00 / 0:26

Note
So this the kind of thing I do all the time. Use the zfs and memdev profiles, and then create a pool.

As you see, that run was ~5s. So if I was working on a change in pool creation, I've just done my entire test.

0:00 / 0:29

Note
This how I run part of the test suite. Load the zfs and ztest profiles, run the test runner, and tell it which part of the test suite to run.

I deliberately chose a short one. Tests are passing, great.

 OpenZFS build support

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
So, we now have the ability to make custom VMs pretty easily. But, we still have to get our work in there.

 OpenZFS build support
The dream:

$./autogen.sh
$./configure --prefix=/path/to/quiz/system
$ make -j6
$ make install

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
OpenZFS is built through autotools, so my first thought was that I would just do something like this.

 OpenZFS build support
The reality:

$./autogen.sh
$./configure \
 --with-linux=/path/to/quiz/system/kernel/x86_64/kbuild/6.1.124 \
 --prefix=/usr/local \
 --disable-sysvinit \
 --disable-systemd \
 --disable-pam \
 --disable-pyzfs \
 --with-mounthelperdir=/usr/local/sbin \
 --with-dracutdir=/usr/local/lib/dracut \
 --with-udevdir=/usr/local/lib/udev \
 'lt_cv_sys_lib_dlsearch_path_spec=/lib /usr/lib /usr/lib/x86_64-linux-gnu'
$ make -j6
$ make install DESTDIR=/path/to/quiz/system

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Turns out what you actually need is more like this.

Some of it is just that the defaults don't work in this environment, some is making sure it uses a quiz kernel, some is stuff that you have to override values detected from the host, and that last thing is some deep internal thing around library discovery that there isn't a config option before.

[mock exasperation]

 OpenZFS build support: quiz-zfs
For now:

$./autogen.sh
$ quiz-zfs configure
$ make -j6
$ quiz-zfs make install

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
For now, I wrote a helper script that intercepts particular calls to configure and make and fills in the right options.

Someday I guess I'd like to not have it, by improving the build system proper to understand better what's happening. But, this has been so convenient and reliable that in two years I just haven't got to it.

 OpenZFS Linux support
OpenZFS 2.3.0 & 2.2.7

Linux 4.18 (August 2018) - 6.12 (November 2024)
Red Hat Enterprise Linux 8.10: 4.18+
Ubuntu 18.04.5 LTS (HWE): 5.4+

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Current stable releases of OpenZFS support Linux back to 4.18, which was released in August 2018, nearly 7 years ago. It's the base kernel for Red Hat EL8, heavily used in on massive research systems where OpenZFS is heavily used.

(This time last year, we supported back to 3.10 for RHEL7, June 2013).

Linux explcitly has no stable internal API, and they make good on that promise, churning heavily even within patch releases. OpenZFS has to build compatibility shims to cover all of these versions.

So quiz definitely needs support for multiple kernels available at any time, and ships with a another script to assist with building and managing them.

 Kernel build support: quiz-kernel
compiles specific kernels version: -k 6.1.124

or latest in series: -k 6.1

or release candidate: -k 6.13.0-rc7

or nightly build: -k 6.13.0-next-20250117

upgrade all compiled kernels to latest: -K -U -X

rebuild with changed config: -k ... -e CONFIG_FOO -m CONFIG_BAR

rebuild with Clang/LLVM: -k ... -L

run with specific kernel: quiz -k 6.1.124

or any in series: quiz -k 6.1 ...

robn.au/quiz-25 quiz: tiny VMs for kernel development

 Sun ZFS
OpenSolaris build 27 (2005), Solaris 10 6/06 U2 (2006)

SPARC (big-endian)
i386 (little-endian)

ZFS is endian-agnostic
Stores everything in native endianness
With a flag indicating big or little
Pools imported on "foreign" endianness will be byte-swapped on the fly

OpenZFS inherits this legacy

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
Short history detour.

OpenZFS came from Sun ZFS, which was first released in the Solaris of the day in 2005+2006. Solaris targeted two main architectures back then: SPARC and i386. One was big-endian, the other was little-endian.

(Endianness, if you haven't heard this before, describes which order the computer stores numbers; do they store the "big end" (higher-order components) first, or the "little end". Maybe we could say our conventional decimal system would be "big endian" in this model).

Sun wanted it to be possible for a storage array to work with both kinds of machines they sold, so they designed ZFS to be "endian- agnostic". The endianness is stored with the data, and if its imported on a "foreign" endianness it would be byteswapped on read and write.

OpenZFS inherits this legacy, so I wanted it to be possible to test on both kinds of systems.

 Multiple architectures
ppc64 support

qemu machine emulation

cross-compile kernels
cross-compile OpenZFS (WIP)

Everything takes a -a <arch> argument

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
So, quiz has recently gained support for multiple architectures.

I chose powerpc, because there's not a lot of real big-endian hardware out there these days, but at least you can still buy these, so kernel support is still good.

It runs under qemu's machine emulation.

`quiz-kernel` has cross-compiling support.

`quiz-zfs` is getting cross-compiling support. Still work to do.

 demo

tmux & multiarch

Note
Last demo, showing two unrelated features.

0:00 / 1:16

Note
So choosing a different architecure with -a, and a different run control with -r.

This is a software emulation, so its a bit slower to get going.

Here we are in tmux, showing some info about the kernel and profiles loaded.

Kernel log is separated out onto the first window. Run is in the second. And of course its tmux, so you can open a new window and poke around.

And its ppc, apparently! See, processor kinds I've never heard of.

OpenZFS did load, but as I said, the userspace doesn't compile yet. So all I can do is look at the kernel stats.

And there's tmux; it'll pause when the run finishes so you can still look around if you want.

 Plans and dreams
multiple instances, for each OpenZFS checkout
writable host mount (save logs and build artifacts)
profiles for building block devices out of dm stacks
perform the same run over multiple kernel versions

(get a better puzzle piece for a logo, please help)

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
It's actually pretty complete. There's a few things I want to do still.

[bullets]

Thos are the little things. There's also one big thing.

 FreeBSD support
OpenZFS is the default filesystem for FreeBSD

Build more FreeBSD-specific features
Make sure my changes work well on both platforms

robn.au/quiz-25 quiz: tiny VMs for kernel development

 FreeBSD support (guest)
Extract base.tgz

Cross-compile kernel FIRECRACKER config

p9fs available in FreeBSD 15.x (December 2025)
unionfs in early planning stages

use NFS?
use symlinks?
combine on host side into disk image?

robn.au/quiz-25 quiz: tiny VMs for kernel development

 FreeBSD support (host)
bhyve : FreeBSD-native hypervisor

fundamentally different model to KVM
anonymous & self-destructing VMs coming in FreeBSD 15.x
initial support for Linux kernel direct load

(I need to find time to finish it)

robn.au/quiz-25 quiz: tiny VMs for kernel development

 FreeBSD support (host)
qemu works now, but no hardware acceleration

bhyve (libvmm) memory model doesn't match

options still being considered
reimplement/extend libvmm to support qemu model

implement KVM (port from Illumos?)
port NVMM from NetBSD?
add the kitchen sink to bhyve ?

robn.au/quiz-25 quiz: tiny VMs for kernel development

 quiz

https://github.com/robn/quiz

https://github.com/robn/quiz
Note
So that's quiz. If you decide to use it, awesome! If you're not sure, please come ask me stuff!

But, quiz is just how I approached making kernel development comfortable. There's loads of ways to do it.

There's a more important point that I want you to take away from this.

kernels are
just programs
do not listen
to their bulls🞄🞄t

robn.au/quiz-25 quiz: tiny VMs for kernel development

Note
And that is this.

Kernels are just software. Don't imagine they're special. They're just code, and they can be build and manipulated just like any other. There's never been an easier time to get into kernel development, and if you think you'd like to give that a try, go for it.

