
Note
SOUND CHECK

Why fsync() on OpenZFS can’t fail
(and what happens when it does)
Rob Norris, Klara Inc.

Hello!

Note
Hi! Thanks for coming along.
★

#robnfacts
He/him
Australian

One wife, two cats, three kids
1989 - 1999: Kid messing with
computers
1999 - 2023: Linux sysadmin
2023 -: OpenZFS developer
2023 -: one FreeBSD server
Hundreds of side-projects and dumb
experiments

Note
You probably don't know who I am. My name is Rob. Here's a few quick facts.
★ I've some pronouns
★ I'm from Australia. You might have recognised the accent.
★ Here's some flags I like
★ There's some family at home, very nice
★ I've been banging on computers most of my life
★ Then spent a bunch of time taking care of other people's computers, using something called Linux; you probably haven't heard of it
★ Then last year I jumped into OpenZFS development full time
★ And I have a FreeBSD server of my own now, which is how I got past the guards
★ 35 years of messing around means I have a lot of silly ideas and non-working experiments lying around. I'm sure some of you are familiar with this!

But this talk is not about me.
★

#notrobnfacts

Note
Sort of. Its about a version of me.

from afrom a
parallelparallel

universeuniverse

Note
And how I went from being a simple computer programmer to producing...

Note
the world famous storage-themed boy band *FSYNC.

Note
This is obviously the dumbest thing ever but I needed a nice simple story to tell that's got data in sufficient quantities to not be totally contrived, and music files are the only kind of data that also allow this terrible gag to work.

Thank you for your understanding.

/usr/bin/boyband
int main(int argc, char **argv) {

 return (0);
}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So anyway, long ago, not-me got a new computer, and wrote a program to make music.

/usr/bin/boyband
int main(int argc, char **argv) {
 void *song_data;
 size_t song_len;
 generate_song(&song_data, &song_len, TYPE_DANCE|TYPE_LOVE);

 return (0);
}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
The details of how it makes music aren't important. Maybe its a generative AI, maybe it sends a telegram to a famous composer and waits several months for a reply.

But whatever, we end up with some music data in memory.

/usr/bin/boyband
int main(int argc, char **argv) {
 void *song_data;
 size_t song_len;
 generate_song(&song_data, &song_len, TYPE_DANCE|TYPE_LOVE);

 int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
 write(fd, song_data, song_len);
 close(fd);

 return (0);
}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
The we write that data out to disk. Open the file passed in by the user, with some flags. Write the data into it. Close it again. Simples.

/usr/bin/boyband
int main(int argc, char **argv) {
 void *song_data;
 size_t song_len;
 generate_song(&song_data, &song_len, TYPE_DANCE|TYPE_LOVE);

 time_t start = time();

 int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
 write(fd, song_data, song_len);
 close(fd);

 time_t end = time();
 printf("wrote '%s' in %d seconds\n", argv[0], end-start);

 return (0);
}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And a bit of nice UI, and we're done. Instant hit generator!

/usr/bin/boyband
$ boyband debut_song.wav
wrote 'debut_song.wav' in 30 seconds

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
I couldn't write a song in 30 seconds so that feels pretty good to me!

Note
So, what does the storage part here actually do?

 Writing a file

name data

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Lets imagine a simple filesystem that stores filenames and associated data.

Here's a brand-new disk, nothing on it.

 Writing a file
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
We open the file, which creates the name. The little blue dot as a flag that the file is currently open.

 Writing a file
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);

name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
We write the data out.

 Writing a file
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);
close(fd);

name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And close the file, and we're done. Now we can send the disk off to manufacturing and get our new song into record stores.

Note
Easy money!

Note
With all our money, we buy a fancy new computer.

🖴

Note
It has a hard drive!

Note
And loads of RAM!

...

uhh

Note
And loads of RAM!

/usr/bin/boyband
$ boyband hit_song.wav
wrote 'hit_song.wav' in 3 seconds

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And so much faster! Last time it took 30 seconds to write out, now its only 3 seconds! Wow!

🖴 Writing a file

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So now its time to make our new hit song.

🖴 Writing a file
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

🖴 name data

debut_song.wav

hit_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Just like before, create the file on disk.

🖴 Writing a file
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);

🖴 name data

debut_song.wav

hit_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Write the data.

🖴 Writing a file
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);
close(fd);

🖴 name data

debut_song.wav

hit_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Close it, and we're done.

⏻

Note
So we finish, and we turn off the computer.

Note
We go out to the cool music people party.

Note
But when we come back to the computer, something bad has happened.

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Our new hit song is gone!

Note
Of course, our fancy new computer is using all that RAM as a cache.

🖴 Writing a file (with cache)

name data

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So what's actually happening is that our file operations are changing an in-memory version of our filesystem.

🖴 Writing a file (with cache)
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

name data

hit_song.wav

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

🖴 Writing a file (with cache)
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);

name data

hit_song.wav

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

🖴 Writing a file (with cache)
int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);
close(fd);

name data

hit_song.wav

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So there you see, our program thinks everything is done, but the data isn't on disk yet.

Some time later, a few seconds probably, the OS would have written it out to the disk in the background.

⏻ Power off

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
But we didn't wait, we just turned the computer off, and it was lost.

This is one of the reasons you don't just turn the computer off, but rather, do a controlled shut down. But still, we can our program a bit more robust.

fsync()

Note
By adding a call to `fsync()`.

🖴 Writing a file (with fsync())

name data

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So lets start over.

🖴 Writing a file (with fsync())

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

name data

hit_song.wav

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Just like before, our file is created in the cache.

🖴 Writing a file (with fsync())

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);

name data

hit_song.wav

🖴 name data

debut_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And the data written there too.

🖴 Writing a file (with fsync())

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);
fsync(fd);

name data

🖴 name data

debut_song.wav

hit_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Then we call `fsync()` to tell the computer to force the changes out to disk.

🖴 Writing a file (with fsync())

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);
fsync(fd);
close(fd);

name data

🖴 name data

debut_song.wav

hit_song.wav

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And then we can close it and move on with our day.

/usr/bin/boyband
$ boyband hit_song.wav
wrote 'hit_song.wav' in 10 seconds

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Of course, part of the reason it appeared to go so fast is that it was only writing to memory. Still, this computer is faster than the old one, so we still have lots of time left over for partying.

Note
Then came the catastrophe.

/usr/bin/boyband
$ boyband best_song.wav
wrote 'best_song.wav' in 5 seconds

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
It was time for a new song, so I ran my program as normal. It did take a little less time than usual to save, but everything seemed fine, and I didn't think any more of it.

But a few days later I tried to listen to it...

Note
It was a mess! Heavily corrupted! Sounded awful!

Note
Turns out, the disk had bad blocks.

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
write(fd, song_data, song_len);
fsync(fd);
close(fd);

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And if we'd bothered to do error checks, we might have noticed.

Maybe you thought I just elided the error checks to keep the presentation simple. Its true, a little bit. But now its important so...

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

 write(fd, &song_data[pos], song_len);

 fsync(fd);

close(fd);

Note
We actually need a lot more program.

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
if (fd < 0) {
 perror("open");
 exit (EX_IOERR);
}

 write(fd, &song_data[pos], song_len);

 fsync(fd);

close(fd);

Note
It might not be possible to create the file for some reason.

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
if (fd < 0) {
 perror("open");
 exit (EX_IOERR);
}

ssize_t pos = 0;
while (pos < song_len) {
 pos = write(fd, &song_data[pos], song_len);
 if (pos < 0) {
 perror("write");
 exit (EX_IOERR);
 }
 song_len -= pos;
}

 fsync(fd);

close(fd);

Note
Writing can be kind of tricky, because the `write()` system call won't necessarily write everything; it'll just tell us each time how much it wrote, so we have to loop until we've written everything.

int fd = open(argv[0], O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
if (fd < 0) {
 perror("open");
 exit (EX_IOERR);
}

ssize_t pos = 0;
while (pos < song_len) {
 pos = write(fd, &song_data[pos], song_len);
 if (pos < 0) {
 perror("write");
 exit (EX_IOERR);
 }
 song_len -= pos;
}

if (fsync(fd) < 0) {
 perror("fsync");
 exit (EX_IOERR);
}

close(fd);

Note
`fsync()` can fail for all sorts of weird reasons, but most often bits because something is wrong with the disks.

And `close()`, well, that can fail too. Actually strictly speaking there's a few things here that aren't good enough for a real program, but that's ok; most of the time you have library code (in any language) dealing with this for you.

The take away is that, when disks go bad, our program gets told about it, and can take remedial action.

Note
Alright, lets come back to the real world for a while, because honestly the whole boyband thing was barely surviving and we have to talk about real things for a while.

Note
So lets take a look at how OpenZFS implements some of this stuff under the hood, so we can understand where it can go wrong.

objset

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Every OpenZFS "top" object is called an "object set". Things like filesytems, zvols, snapshots, etc are all object sets.

objset
0
1
2
3
4
5

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
As the name suggests, each object set represents a collection of data objects. Each object has a numeric id, from zero to UINT64_MAX.

objset
0
1
2
3
4
5

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Each object has a type. We'll come back to that.

Of course, not all objects really exist at any given time. They're just empty gaps in the object table.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And each object has a block pointer...

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Which points to its location on disk.

There's different types of objects.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5

META
META

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Some are internal dataset metadata, housekeeping, lists, all sorts of things. We don't much care about them here.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5

META

FILE

FILE

META

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
In a filesystem dataset, there's going to be lots of plain boring files objects.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5

META

FILE

DIR
FILE

META

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And then there's directory objects. They're just like any other object, its just the filesystem code knows to interpret them differently to regular file objects.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
A directory object is basically a dictionary (or map or hashtable or...), where the key is the filename and the value is the id of the object for that file.

/usr/bin/boyband
$ boyband love_song.wav
wrote 'love_song.wav' in 10 seconds

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So, we want to create a new file.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

 love_song.wav 4

FILE

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
The call to `open()` will allocate an object, and add a new directory entry pointing to it.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

 love_song.wav 4

FILE bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And `write()` will add all the data.

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So here's the tricky bit. OpenZFS is a transactional filesystem, which basically means that all the outstanding changes are applied atomically as a group - either they all go, or none of them do. We can imagine this as the previous state of the filesystem being entirely replaced by the new state when the transaction is applied.

That's a challenge for `fsync()`, which needs to be able to ensure that a single object is stable on disk. The naive implementation would be to simply wait for the transaction to be written out.

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
But if the transaction has a lot of change it, that could be a long wait, for a whole bunch of stuff we don't care about. Something else is needed.

fsync()

Note
So what _is_ 'fsync()' really?

 Royal decree
POSIX (IEEE Std 1003.1-2017):

The fsync() function shall request that all data for the open file descriptor named by
fildes is to be transferred to the storage device associated with the file described by
fildes. The nature of the transfer is implementation-defined. The fsync() function
shall not return until the system has completed that action or until an error is
detected.

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Actually, it's not entirely clear. This is literally all that POSIX says about it.

[read quote]

But broadly, everyone has interpreted it the same way: after it returns successfully, the data should be on disk in such a way that if the system was rebooted immediately afterward (crash, power loss, etc), upon its return the data would be safely stored.

What POSIX does have is the sweetest two words in a programmer's vocabulary.

IMPLEMENTATION
DEFINED

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So OpenZFS adds some extra storage to the object set.

objset
0 bp

bp
bp
bp

bp

1
2
3
4
5

bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
This storage is not an object, and so it isn't bound to the normal transaction rules. We can store whatever we like in there.

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So going back to our previous example...

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So what we do is, as each call comes in from, we make the corresponding change in the transaction as normal.

CREATE 2 love_song.wav 4

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
And we also record the operation that caused this change to happen.

CREATE 2 love_song.wav 4

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4

WRITE 4bp

bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Same for the write. There's often no need to make a separate copy of the data though, we can just reference it twice.

So now in memory we have two different representations of the same set of changes, with different qualities. So one of two things can happen.

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4
bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
If no one calls `fsync()`, the transaction is written to disk as normal. Since its now safely stored, we don't need to keep the second record around, and we can just delete it from memory.

CREATE 2 love_song.wav 4

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4

WRITE 4bp

bp

bp C W bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
But if someone calls `fsync()` for object 4, we instead add all the records that reference it to our special object set storage. We also write the data block right then and there.

And at this point, we've fulfilled `fsync()`'s API contract: we have a record on disk of all changes that happened to that object. So `fsync()` can return success, and we've only had to do the minimum amount of IO necessary, and we didn't have to wait for the entire transaction.

From here, one of two things can happen.

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4
bp

bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
If the transaction commits normally, we can just get rid of all that extra accounting, both in memory and on disk, and life proceeds as normal.

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp

bp C W bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
But if the machine crashes before we can write out the transaction, we end up here. The stored data proper is back where it was before we started the transaction, but we have enough other pieces on disk to get back to where we were.

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4
bp

bp C W bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So the next time we mount the dataset, we replay all those operations...

objset
0 bp
1
2
3
4
5 FILE

DIR
FILE

 debut_song.wav
 hit_song.wav

3
5

bp
bp
bp

bp
FILE

 love_song.wav 4
bp

bp

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
... and commit it all and clean up, and now everything is where the application thinks it is.

Incidentally, if you've used OpenZFS at all you might have heard of this thing. This is the ZIL, the ZFS Intent Log. If you've ever added a SLOG device to your pool, you've just added a special place for the extra housekeeping to be stored.

Note
So I want to tell you a dirty secret.

Note
When we think about our storage, we think about it being very close to our software.

Note
But there's often all of this other stuff in between us and our storage.

Note
And we have no idea what any of it is.

Note
And that makes our fast computer and fast disks slow again.

And in computing, how do we make slow things go fast?

Note
We add cache memory!

 Caches all the way down

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
But as we learned before, when we're writing to memory so we can pretend disks are fast, we need to do some other thing to make push that memory out to disk.

 Caches all the way down
POSIX

write(fd)
fsync(fd)

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Just as in our program we have to call `fsync()` after `write()`...

 Caches all the way down
POSIX

write(fd)
fsync(fd)

SCSI

WRITE
SYNCHRONIZE CACHE

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
If we're writing to a SCSI device, we have to send SYNCHRONIZE CACHE to make it flush.

 Caches all the way down
POSIX

write(fd)
fsync(fd)

SCSI

WRITE
SYNCHRONIZE CACHE

NVMe

Write
Flush

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Or NVMe, a Flush command.

So that's fine, this makes sense, and just as we made our user program flush
when it was done writing, we can do that with our filesystem software when it's
done writing.

 OpenZFS transaction commit
Wait for all the writes to complete
Flush all devices

Write the "even" labels
Flush all devices

Write the uberblocks
Flush all devices

Write the "odd" labels
Flush all devices

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So at the end of every transaction, OpenZFS tries really hard to ensure everything is on disk. It runs this sequence of writes and flushes, one at a time, checking each along the way. If it crashes part-way through the sequence, it can work out where it was in the sequence by what's on disk, and know that a transaction was not fully committed and should be rolled back.

 Error handling: writes
OpenZFS subsystems submit write IO requests
Grouped together, form the "transaction"
One fails, all fail

Writes issued to the disk

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
There's some really careful error checking to make this all safe.

★ All the different parts of OpenZFS submit requests for whatever writes they want to happen.
★ They all get grouped together, forming the "transaction"
★ Because they're a transaction, they succeed together, or they fail together.

★ So we issue them all, and then wait for the results to return.

 Error handling: writes
If a write fails:

Set the IO request aside
Send a "probe" (label read+write cycle)
If the probe fails, the write IO request is failed

(Invoking redundancy/self-healing behaviours)
If the probe succeeds, the original IO is retried
If the IO fails a second time, the pool is suspended

All outstanding IO held (blocked) until the pool unsuspends
Then retried

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
If a write to a disk returns a failure, we try to figure out what happens.

★ Put the request to the side
★ We send a "probe" to the device, which is to read, then write, a know location on the disk. We need a controlled sequence where we know for sure what the result will be, so we use the labels that we wrote in the last transaction
★ If the probe fails, we assume the entire disk is dead, and we fail this single IO request
★ This will usually invoke redundancy mechanisms, for example, the RAIDZ layer can decide to retry the write to different disks.
★ If the probe succeeds, then we assume that it was some transient failure, and we reissue the write IO that we set aside.
★ If it succeds, great! But if it fails again, then something very bad is happening, and we suspend the pool rather than trying to correct for it.
★ Suspending sets _all_ outstanding IO aside until the pool unsuspends (ie, operator corrects the fault and runs `zpool clear`.
★ Then all the IO is reissued and everyone gets on with life.

So as you see, OpenZFS is very careful and methodical about understanding write failures, and double checks all its work before suspending the pool. This is why we love it, right.

 Error handling: flush

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Alright, so that's write errors, what about flush errors?

This is much simpler.

 Error handling: flush

robn.au/fsyncWhy fsync() on OpenZFS can't fail

 Error handling: flush

robn.au/fsyncWhy fsync() on OpenZFS can't fail

 Error handling: flush

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So... OpenZFS doesn't ever actually check flush errors.

 Flushed away
zio_flush()

 zio_ioctl(pio, vd->vdev_spa, vd, DKIOCFLUSHWRITECACHE, NULL, NULL,
 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE));

DONT_RETRY : if this operation fails, don't bother trying again

CANFAIL : if this operation fails, don’t suspend the pool

DONT_PROPAGATE : if this operation fails, don’t tell me about it

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
This is the heart of the flushing IO function. The flags tell the story; this is about the most aggressive way to say "issue this IO and I don't care what happens".

★ `DONT_RETRY` turns off the "on failure, probe and retry" behaviour we saw in the write path
★ similarly, `CANFAIL` turns off the "on failure, suspend the pool" behaviour

Those two are probably reasonable for for flushing; the success or failure of a flush is a crucial piece of information about the pool state, and we don't necessarily the IO layer's automatic responses.

★ What _is_ unreasonable is `DONT_PROPAGATE`, which is literally "ignore errors". This operation will _always_ return success.

So this seems bad, and indeed isn't great, and I do have some work in progress to improve things. But it's mostly not a problem because of the four steps in the commit sequence, and because even though we won't see the flush failures, the next write will almost certainly fail, and the pool will be "safely" suspended.

fsync()

Note
But our concern isn't flushing at the end of the transaction, but rather, in response to `fsync()`. And that's where the lack of error checking in the flush operation can actually contribute to data loss.

 Commitment issues

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So the function underneath `fsync()` is called `zil_commit()`, and I'm not going to show it to you because its really the entry point to the entire ZIL subsystem, which is complicated.

So instead I'll show you some pseudo-code which covers the rough shape.

 Commitment issues
int fsync(int fd) {
 zil_commit(fd);
 return (0);
}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So this is fsync(), as we know, just a dumb unfailing wrapper around zil_commit().

 Commitment issues
int fsync(int fd) {
 zil_commit(fd);
 return (0);
}

void zil_commit(int fd) {

}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Alright, so `zil_commit()`.

 Commitment issues
int fsync(int fd) {
 zil_commit(fd);
 return (0);
}

void zil_commit(int fd) {
 zio_t *write_zio = zil_make_zio_for_fd(fd, ZIO_FLAG_CANFAIL);

}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
We create the write IO request for the ZIL block, containing eveyrthing related to that particular object. We set the `CANFAIL` flag, so a write failure doesn't suspend the pool.

 Commitment issues
int fsync(int fd) {
 zil_commit(fd);
 return (0);
}

void zil_commit(int fd) {
 zio_t *write_zio = zil_make_zio_for_fd(fd, ZIO_FLAG_CANFAIL);
 int write_err = zio_wait(zio);

}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
We issue it and wait for it to complete, and capture its error.

 Commitment issues
int fsync(int fd) {
 zil_commit(fd);
 return (0);
}

void zil_commit(int fd) {
 zio_t *write_zio = zil_make_zio_for_fd(fd, ZIO_FLAG_CANFAIL);
 int write_err = zio_wait(zio);

 zio_t *flush_zio = zil_root();
 zio_flush(flush_zio);
 int flush_err = zio_wait(flush_zio);

}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Then we issue the flush, and capture its error. Of course, as we know, the flush IO is flagged to not propagate errors, so that will always be zero, but still, we tried.

 Commitment issues
int fsync(int fd) {
 zil_commit(fd);
 return (0);
}

void zil_commit(int fd) {
 zio_t *write_zio = zil_make_zio_for_fd(fd, ZIO_FLAG_CANFAIL);
 int write_err = zio_wait(zio);

 zio_t *flush_zio = zil_root();
 zio_flush(flush_zio);
 int flush_err = zio_wait(flush_zio);

 if (write_err < 0 || flush_err < 0)
 txg_wait_synced(...);
}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
If either the write or the flush fails, we abort, and wait for the transaction commit to complete. Remember from before that our whole API contract is "get the data onto disk"; it doesn't matter _how_ we do that.

But if both the write and the flush succeeded, we can return, knowing our data is on disk!

Note
And finally, we know everything we need to answer the question posed right back at the start: what happens when `fsync()` fails?

/usr/bin/boyband : writes data, calls fsync()

zil_commit() : issues write IO, succeeds

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So we set up a new computer, attach a disk array, and put OpenZFS on it. We do it properly, its a RAIDZ or a bunch of mirrors or whatever, a good and nice and redundant topology.

★ We write some data, and call `fsync()`

★ Inside `zil_commit()`, the write IO is issued, and succeeds. The data is in the disk caches, not yet on disk properly.

★ Then the disks lose power. In our case, a backplane failed briefly, but you can imagine someone tripped over the power cord.

★ `zil_commit()` issues the flush. It actually fails, but because its not propagating errors, it appears to succeed.

★ `fsync()` returns success, even though the data is _not_ on disk yet. Still, this isn't the end of the world, because the data is still in memory in the current transaction, and will be written at the transaction commit.

★ Transaction commit begins, writes IO is issued.

★ That promptly fails, and the pool suspends.

/usr/bin/boyband : writes data, calls fsync()

zil_commit() : issues write IO, succeeds

Array loses power

zil_commit() : issues flush IO, "succeeds"

 zil_commit() returns, fsync() returns success

Transaction commit begins, writes issued
 Write failed, IO held, pool suspended

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So we set up a new computer, attach a disk array, and put OpenZFS on it. We do it properly, its a RAIDZ or a bunch of mirrors or whatever, a good and nice and redundant topology.

★ We write some data, and call `fsync()`

★ Inside `zil_commit()`, the write IO is issued, and succeeds. The data is in the disk caches, not yet on disk properly.

★ Then the disks lose power. In our case, a backplane failed briefly, but you can imagine someone tripped over the power cord.

★ `zil_commit()` issues the flush. It actually fails, but because its not propagating errors, it appears to succeed.

★ `fsync()` returns success, even though the data is _not_ on disk yet. Still, this isn't the end of the world, because the data is still in memory in the current transaction, and will be written at the transaction commit.

★ Transaction commit begins, writes IO is issued.

★ That promptly fails, and the pool suspends.

Power restored

zpool clear

IO reissued
Transaction completes

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
★ Ideally, the problem could be resolved with the system remaining up.

★ If that happens, the operator runs `zpool clear` to unsuspend the pool.

★ The held IO is reissued, and succeeds.

★ Transaction completes, everything is on disk, all is well.

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Or maybe its not fixable right now. Or maybe the operator doesn't know what the problem is and reboots the computer.

Then the held IO is lost.

Note
But it doesn't actualy _matter_ whether or not we can bring the pool back to life.

The damage is already done.

We lied to the application when we told it the data was definitely on disk.

If we hadn't, the application perhaps could have taken remedial action itself, but we did, so it was free to forget everything and move on with its work.

Note
So, how do we fix this?

 ZIL flush error propagation
 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
 if (vd != NULL) {
 /*
 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
 * always used within "zio_flush". This means,
 * any errors when flushing the vdev(s), will
 * (unfortunately) not be handled correctly,
 * since these "zio_flush" errors will not be
 * propagated up to "zil_lwb_flush_vdevs_done".
 */
 zio_flush(lwb->lwb_root_zio, vd);
 }

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
So it turns out that the ZIL already has code to handle flush failures, and thena also has comments explaining why its not currently used.

 ZIL flush error propagation
diff --git module/zfs/zio.c module/zfs/zio.c
index 213fe5c48..002f117df 100644
--- module/zfs/zio.c
+++ module/zfs/zio.c
@@ -1633,7 +1633,7 @@ zio_flush(zio_t *pio, vdev_t *vd)
 if (vd->vdev_children == 0) {
 zio_nowait(zio_ioctl(pio, vd->vdev_spa, vd,
 DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL |
- ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
+ ZIO_FLAG_DONT_RETRY));
 } else {
 for (uint64_t c = 0; c < vd->vdev_children; c++)
 zio_flush(pio, vd->vdev_child[c]);

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Given that, our first thought was, well, what if we just remove the `DONT_PROPAGATE` flag, and let this code actually handle them?

Note
This actually worked! In our testing, we never saw a situation where any file that had had a successful `fsync()` was later found to be missing or corrupt once the pool was recovered.

Alas, there was a problem.

Note
Which is that when the pool is degraded, performance fell sharply.

void
zio_flush(zio_t *pio, vdev_t *vd)
{

if (vd->vdev_children == 0) {
zio_nowait(zio_ioctl(pio, vd->vdev_spa, vd,
 DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL |
 ZIO_FLAG_DONT_RETRY));

} else {
for (uint64_t c = 0; c < vd->vdev_children; c++)

zio_flush(pio, vd->vdev_child[c]);
}

}

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
This is `zio_flush()`. What you're looking at is a fairly common operation within OpenZFS, which is to walk the vdev tree.

So here, `zio_flush()` is called with the top-level vdev (eg a mirror or raidz), and then we recursively walk down the tree, issuing a true flush operation only to devices with no children, that is, with the flush is issued to a top-level vdev (eg a mirror or raidz),

Note
Six disks

Note
Six flush ops

Note
Five successes, one fail. And since these are a group, if one fails...

Note
They all fail. Ugh.

And so the ZIL flush fails, so it falls back to waiting for the transaction to commit, which is the whole thing we wanted to avoid and the reason the ZIL was introduced in the first place!

So we played with this for a while and thought very hard, and came to understand what was wrong.

 The right amount of flushing
POSIX

write(fd)
fsync(fd)

SCSI

WRITE
SYNCHRONIZE CACHE

NVMe

Write
Flush

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
Remember this slide from earlier, when I said that disk write & flush operations were analagous to file write & flush operations?

Turns out that's very subtly wrong. What's the difference here?

...

The POSIX file ops operate on a single file. This, the flush will only flush what was written.

The disk flushing op however, flushes _everything_, regardless of whether or not its related to the write.

Note
So if we only write to three disks.

Note
We should only flush those three. Too many, and we risk get errors from failed devices we don't care about. Too few, and we risk not getting errors from disks we do care about.

The problem is that we dont know which disks we wrote to. Because, when we issue an IO request, we issue it to the pool as a whole. and then the tree of vdevs will process it it. mirrors will write the same data out multiple times, raidz will split the data into smaller pieces and spread them across other disks, and so on.

 vdev tracing
ZIO_FLAG_VDEV_TRACE

zio->io_vdev_trace_tree

zio_flush_traced(flush_zio, write_zio)

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
★ So we added something we call "vdev tracing". You add a flag to your IO, in our case, the write IO.

★ When the IO returns successfully, a new field `io_vdev_trace_tree` has a list of all the child vdevs (ie disks) that were involved in the processing of the entire IO.

★ And then we added a new flushing function, `zio_flush_traced()`. This gets passed the successful write IO, and pulls out its trace tree and only issues flushes to the specific devices recorded in there.

 Status report
In production at a customer site
Upstreaming has started:

Test cases added to demonstrate the fault
Additional test tools needed (GH#15953)
Patches ready to go once test suite can support it

robn.au/fsyncWhy fsync() on OpenZFS can't fail

https://github.com/openzfs/zfs/pull/15953
Note
Both these features are in production at the customer that originally reported the problem, and seem to be performing well.

Upstreaming has started. I have a small standalone test for the test suite that demonstrates the problem reliably and that the fix actually fixes it. That required some extensions to the test tools, which are in review. Once that's landed, the patches proper will pushed for review.

 Future work
Extend to transaction commit flushes
IO replay after suspend
fsync() error return

robn.au/fsyncWhy fsync() on OpenZFS can't fail

Note
There's more work coming up in this space, some of it already started.

We need to study the transaction commit flushes more, and work out if or how to to extend this work to those flushes. The main thing is deciding what a flush failure even means at each step, and what the right resolution is.

One interesting case we need to consider further is if the main data write succeeds and lands in the disk caches, then the disks are reset and the caches are lost. Once the pool has resumed, a flush will succeed, because theres nothing to flush, so we move on thinking the data is on disk, when it never got there. This likely means a tighter coupling between writes and flushes, such that we keep the write IO around until after the flush succeeds, not just the write succeeding, so we can reissue the writes once the pool returns.

Finally, we want to make it possible for `fsync()` to return an error instead of just blocking forever, so an application can take more immediate remedial action. We already have this in production at a customer site, but the code will need a lot more testing and forward-porting to 2.2 before it can be posted.

Note
And that is the story of *FSYNC, and their ongoing search for reliable storage systems.

