
Note
SOUND CHECK

Why fsync() on OpenZFS can’t fail,
and what happens when it does
Rob Norris, Klara Inc.

Hello!
 Australian

Klara, Inc.
OpenZFS developer
Recovering Linux sysadmin
FreeBSD non-committer

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

How to do files
robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 A simple storage service
int write_network_stream_to_file(int nfd, char *filename) {
 int err = 0;

 int fd = open(filename, O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);
 if (fd < 0)
 return (errno);

 char buf[1024];
 ssize_t nread;
 while ((nread = read(nfd, buf, sizeof (buf))) > 0) {
 ssize_t nwritten = 0, n;
 while (nwritten < nread && (n = write(fd, &buf[nwritten], sizeof (buf) - nwritten)) >= 0)
 nwritten += n;
 if (n < 0) {
 err = errno;
 close(fd);
 return (err);
 }
 }

 if (fsync(fd) < 0)
 err = errno;

 if (close(fd) < 0 && err == 0)
 err = errno;

 return (err);
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Let's start by imagining we're writing a file upload system. Clients send us whole files, we store them. No edits, just blasting whole objects in. Nothing to it, just a simple storage service. I'll call it something catchy, like Triple-S.

This is the basic structure. The thing on the network is sending us stuff on file descriptor `nfd`, and we need to write it to `filename`. So we open the file, then we spin in a loop, reading a bit, writing a bit. until there's nothing left, or something went wrong.

At this point, all our changes are in memory, so we call fsync, to tell the filesystem please, make sure this is on disk RIGHT NOW before we get out of here. If we don't, the filesystem will write it out in its own time, but more importantly, if it fails, we have no way of knowing. That's no good for when people are trusting us with their data; if something goes wrong, we should probably know about it.

But if it succeeds, we close the file, and we're all good.

Don't look too closely at my error handling, especially the partial write handling there; I just banged it out on the train and never really thought about it again. I never get that stuff right the first time. The point is that I tried.

𓀬 The DMU and the ZIL

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
ZFS accumulates all the changes asked of it in two places in memory, the DMU (Data Management Unit), and the ZIL (the ZFS Intent Log). The DMU version is a bunch of in-memory buffers (these reddish boxes) that hold the "current" or "final" state of the data. They're assigned to a transaction (this yellow box). The ZIL, meanwhile, is a log of all the operations that were applied to make the changes.

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So if we think about our `write()` loop, each call modifies a bit of the DMU buffer, and adds the operation that got us here to the ZIL.

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)
write(42, "leotes ille Dionysius flagitiose"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)
write(42, "leotes ille Dionysius flagitiose"..., 1024)
write(42, "c haec primum fortasse audientis"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)
write(42, "leotes ille Dionysius flagitiose"..., 1024)
write(42, "c haec primum fortasse audientis"..., 1024)
write(42, "istine modo de Carneade? Numquam"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Of course, this is vastly simplified in a number of ways, but its showing all the important parts for our purposes for today.

So right now all this state is in memory, nothing on disk yet. One of two things can happen.

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)
write(42, "leotes ille Dionysius flagitiose"..., 1024)
write(42, "c haec primum fortasse audientis"..., 1024)
write(42, "istine modo de Carneade? Numquam"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
After some time, the transaction closes, and ZFS starts writing it out.

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)
write(42, "leotes ille Dionysius flagitiose"..., 1024)
write(42, "c haec primum fortasse audientis"..., 1024)
write(42, "istine modo de Carneade? Numquam"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Once it's written out, we no longer need the log.

𓀬 The DMU and the ZIL

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So we can just drop it.

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)
write(42, "leotes ille Dionysius flagitiose"..., 1024)
write(42, "c haec primum fortasse audientis"..., 1024)
write(42, "istine modo de Carneade? Numquam"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
The other possibility is that the program calls fsync() while the transaction is still open.

𓀬 The DMU and the ZIL

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
And then, we write out just the log to the pool. The transaction stays open, and could accumulate more changes before it closes.

𓀬 The DMU and the ZIL

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So it closes, and we write it out.

𓀬 The DMU and the ZIL

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
And we're in the same spot as before, data is on disk, everything tidied up, we're good to go.

𓀬 The DMU and the ZIL

write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(42, "t sit, etiamne post mortem colet"..., 1024)
write(42, "leotes ille Dionysius flagitiose"..., 1024)
write(42, "c haec primum fortasse audientis"..., 1024)
write(42, "istine modo de Carneade? Numquam"..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
You might wonder why be bother with any of this. When they call fsync(), couldn't we just do something like, force the transaction closed and write it out? And then we wouldn't even need the log.

And the answer is yes, we could, that would satisfy fsync() just as well too.

But, in practice its not what we want, because...

𓀬 The DMU and the ZIL

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
The transaction can have changes from lots of different files in it, and since ZFS fundamental unit of storage is a transaction, there's no way to just write part of a transaction. So we'd have to write it all, which would make fsync() slow on a busy system.

𓀬 The DMU and the ZIL
write(17, "IT is a truth universally acknow"..., 1024)
write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(38, "Ladies and gentleman, well may w"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)
write(7, "ZORK I: The Great Underground Em"..., 1024)
write(42, "unt instituta capienda. In his i"..., 1024)
write(7, "⏎You are in the kitchen of the w"..., 1024)
write(16, "When Mr. Bilbo Baggins of Bag En"..., 1024)
write(7, "rn on lamp⏎The brass lantern is "..., 1024)
write(7, "lso⏎covered with paint). A dark "..., 1024)
write(17, "e from the north of England; tha"..., 1024)
write(17, "ter; for as you are as handsome "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)
write(7, "ding into⏎darkness.⏎ ⏎>go down⏎T"..., 1024)
write(42, "scio quem illum anteponebas? Me "..., 1024)
write(7, "his last breath, a cloud of sini"..., 1024)
write(16, "ell as (reputedly)⏎inexhaustible"..., 1024)
write(7, "e of the dome (20 feet up) is a⏎"..., 1024)
write(7, "ld not get back up it.⏎On the tw"..., 1024)
write(7, "le to climb⏎down into the canyon"..., 1024)
write(16, "odo was still in his⏎tweens, as "..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
But because fsync() tells us which object we want to sync out, we can pick just that one. Say, the transcript of the time we won Zork.

𓀬 The DMU and the ZIL
write(17, "IT is a truth universally acknow"..., 1024)
write(42, "Lorem ipsum dolor sit amet, cons"..., 1024)
write(42, "m, corpore alius senescit; Dolor"..., 1024)
write(42, " nihil posse ad beatam vitam dee"..., 1024)
write(38, "Ladies and gentleman, well may w"..., 1024)
write(42, "m cum medicinam pollicetur, luxu"..., 1024)

write(42, "unt instituta capienda. In his i"..., 1024)

write(16, "When Mr. Bilbo Baggins of Bag En"..., 1024)

write(17, "e from the north of England; tha"..., 1024)
write(17, "ter; for as you are as handsome "..., 1024)
write(42, "st, nunc quidem hactenus; Quae q"..., 1024)

write(42, "scio quem illum anteponebas? Me "..., 1024)

write(16, "ell as (reputedly)⏎inexhaustible"..., 1024)

write(16, "odo was still in his⏎tweens, as "..., 1024)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So we can write out just those log entries, and remove them from the log. So we write the bare minimum for the requested file.

 Writing files: a review
Changes recorded in two ways

DMU: what we changed (latest state)
ZIL: how we changed it

DMU buffers are bound to a transaction
Do nothing, the transaction closes, and is written out atomically

ZIL contents can be written out by object, on demand
fsync()

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

fsync()

Note
Alright, lets look at fsync().

In ZFS it's actually pretty awesome.

fsync()

Note
Maybe more like that?

Note
Aha yeeaaaahh.

fsync()
never fails

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Anyway, the reason its awesome is because it can't fail. Ever.

 fsync() never fails
int
zfs_fsync(znode_t *zp)
{

zfsvfs_t *zfsvfs = ZTOZSB(zp);

zil_commit(zfsvfs->z_log, zp->z_id);

return (0);
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
This is a simplfied view of the handler for the `fsync()` syscall inside ZFS. As you see, it calls down ti `zil_commit()` to force the relevant part of the log out to disk, and it doesn't check its return.

 fsync() never fails
int
zfs_fsync(znode_t *zp)
{

zfsvfs_t *zfsvfs = ZTOZSB(zp);

zil_commit(zfsvfs->z_log, zp->z_id);

return (0);
}

void
zil_commit(zilog_t *zilog, uint64_t foid)
{

...
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
And that's because zil_commit() has a void return!

But this is function that has to do IO, and IO most assuredly can fail. And then what happens?

 fsync() never fails
int
zfs_fsync(znode_t *zp)
{

zfsvfs_t *zfsvfs = ZTOZSB(zp);

zil_commit(zfsvfs->z_log, zp->z_id);

return (0);
}

void
zil_commit(zilog_t *zilog, uint64_t foid)
{

int err = zil_commit_wait(zilog, foid);
if (err != 0)

txg_wait_synced(zilog->zl_dmu_pool, 0);
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
It does something like this. Try to do the ZIL write stuff, and if that fails, fall back to waiting for the regular transaction sync to complete.

Assuming that it will, of course. Because if the ZIL write failed, there's a good chance the pool is suspended, so that wait will block until it returns. If it returns.

fsync() never fails

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So while its true that fsync() never fails...

fsync() never fails
(but can take a very long lunch)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
It doesn't necessarily succeed.

 All stop
Pool has suspended
fsync() is blocked

Application is waiting
User connection is waiting

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So right now, we're stuck.

 All stop
fsync() could return an error

Application could redirect request to another machine/pool/shard/etc
User service continues

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
But it _could_ be so much better.

 Failing with style
failmode pool property

wait : block until the pool returns (default)

panic : panic the kernel

continue :
new write ops: EIO

in-flight sync ops: block
read ops: ??? (cached, surviving disks can service, etc)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Anyone in this position has likely tried the `failmode` pool property, which decides the behaviour when the pool suspends. And they quickly find its not very useful.

`wait` is the default, and just blocks everything until the pool returns.

`panic` is what it says, just blow up. Nice if you want to cause a reboot maybe? Useless if you have multiple pools and the others are just fine.

But `continue` is .. just weird. It was originally a hack for some weird devices on very old Linux kernels where IO would sometimes just be swallowed - no error, no warning. I'm not really sure how it was supposed to work, but it's not really anything you want.

So yeah, none of these will help you.

 Our mission
robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Alright, so we gotta fix this.

 Our mission
(should we choose to accept it)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Our mission
(should we choose to accept it)

(which we will, because a customer is paying for it)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
By law.

So lets write ourselves a little spec.

 Pay day
If the pool suspends, any fsync() in progress should return EIO .

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Kind of.

 Sync ops
fsync(fd)

fdatasync(fd)

sync()

syncfs(fd) (Linux)

msync(MS_SYNC)

write() / writev() / pwritev() after open(O_SYNC|O_DSYNC)

pwritev2(RWF_SYNC/RWF_DSYNC) (Linux)

sync_file_range() (Linux)

aio (aio_fsync , aio_write , etc)

io_uring (IORING_OP_FSYNC , IORING_OP_WRITEV , etc) (Linux)

sync=always

Note
There are actually a lot of different syscalls that we also have to care about here.

 Pay day
If the pool suspends, any call blocked in zil_commit() should return an
appropriate error.

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Fortunately, these are all ultimately backed by `zil_commit()`, so that can be the new goal.

"Approriate error" means the equivalent of "arbitrary IO error" for the particular call. That's actually a whole separate consideration, which I'll come back to later.

 How to draw an owl
diff --git include/sys/zil.h include/sys/zil.h
index 4747ecc06..3b7bb8ed4 100644
--- include/sys/zil.h
+++ include/sys/zil.h
@@ -571,7 +571,7 @@ extern void zil_itx_destroy(itx_t *itx);
 extern void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx);

 extern void zil_async_to_sync(zilog_t *zilog, uint64_t oid);
-extern void zil_commit(zilog_t *zilog, uint64_t oid);
+extern int zil_commit(zilog_t *zilog, uint64_t oid);
 extern void zil_commit_impl(zilog_t *zilog, uint64_t oid);
 extern void zil_remove_async(zilog_t *zilog, uint64_t oid);

diff --git module/zfs/zil.c module/zfs/zil.c
index 34be54b33..52b18b8e4 100644
--- module/zfs/zil.c
+++ module/zfs/zil.c
@@ -3548,7 +3548,7 @@ zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
 * but the order in which they complete will be the same order in
 * which they were created.
 */
-void
+int
 zil_commit(zilog_t *zilog, uint64_t foid)
 {
 /*

Note
So we start off by just making it possible for zil_commit to return an error.

 How to draw an owl
diff --git module/zfs/zfs_vnops.c module/zfs/zfs_vnops.c
index babb07ca2..17ac19bb5 100644
--- module/zfs/zfs_vnops.c
+++ module/zfs/zfs_vnops.c
@@ -89,7 +89,7 @@ zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
 return (error);
 atomic_inc_32(&zp->z_sync_writes_cnt);
- zil_commit(zfsvfs->z_log, zp->z_id);
+ error = zil_commit(zfsvfs->z_log, zp->z_id);
 atomic_dec_32(&zp->z_sync_writes_cnt);
 zfs_exit(zfsvfs, FTAG);
 }

Note
Plumb them through to all the calls. Here's maybe all we need for fsync().

Draw the rest of
the f🞄🞄🞄🞄🞄g owl

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So now we just have to fill in the details.

 ZIL fallback sync
void
zil_commit(zilog_t *zilog, uint64_t foid)
{

int err = zil_commit_wait(zilog, foid);
if (err != 0)

txg_wait_synced(zilog->zl_dmu_pool, 0);
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Recall why we block at all. The pool has failed, so the ZIL commit fails, and
we fall back to waiting for a full transaction sync.

So we just need `txg_wait_synced` to return failure. So lets follow the breadcrumbs.

 Transaction sync
void
txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
{

VERIFY0(txg_wait_synced_impl(dp, txg, B_FALSE));
}

boolean_t
txg_wait_synced_sig(dsl_pool_t *dp, uint64_t txg)
{

return (txg_wait_synced_impl(dp, txg, B_TRUE));
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Interesting; turns out the underlying function can return under some circumstances. This is the one used to allow the wait to be interrupted by a signal. This is actually used by channel programs, of all things, which are run from userspace. This way the operator can ctrl-C a running channel program and get back to the prompt.

So that's good; it suggests this might already be possible.

 Transaction sync
static boolean_t
txg_wait_synced_impl(dsl_pool_t *dp, uint64_t txg, boolean_t wait_sig)
{

tx_state_t *tx = &dp->dp_tx;
mutex_enter(&tx->tx_sync_lock);
while (tx->tx_synced_txg < txg) {

cv_broadcast(&tx->tx_sync_more_cv);
if (wait_sig) {

if (cv_wait_io_sig(&tx->tx_sync_done_cv,
 &tx->tx_sync_lock) == 0) {

mutex_exit(&tx->tx_sync_lock);
return (B_TRUE);

}
} else {

cv_wait_io(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
}

}
mutex_exit(&tx->tx_sync_lock);
return (B_FALSE);

}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
The heart of that function is a loop. It signals to the sync thread that there is now an active waiter, s
o it should start a sync, and then it goes to sleep in the right way for whether or not we want signals.

When the sync thread is done pushing out the transaction, it then signals anyone waiting on tx_sync_done_
cv. All the waiters wake up and loop, and if we're now past the wanted txg, we return.

It's
complicated

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So I spent a couple of hours the other night trying to figure out how to present the sync thread and the changes required there, and it's both complicated and boring, so I decided not to.

But it's not hard to imagine in concept: if the pool suspends during the IO, it needs to be signalled back to this loop somehow, and then we can do the right thing there.

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
And, as it turns out, this work has already been done! There's an old pull request for OpenZFS that implements "forced export". It makes it so you can export a suspended pool, which you normally can't do because you end up in exactly this situation: the `zpool export` command ends up blocked waiting for the transaction to complete.

 Forced export
typedef enum {

/* No special wait flags. */
TXG_WAIT_F_NONE = 0,
/* Reject the call with EINTR upon receiving a signal. */
TXG_WAIT_F_SIGNAL = (1U << 0),
/* Reject the call with EAGAIN upon suspension. */
TXG_WAIT_F_NOSUSPEND = (1U << 1),
/* Ignore errors and export anyway. */
TXG_WAIT_F_FORCE_EXPORT = (1U << 2),

} txg_wait_flag_t;

int
txg_wait_synced_flags(dsl_pool_t *dp, uint64_t txg, txg_wait_flag_t flags)
{

...
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
It extends the "allow signals to interrupt the wait" mechanism to a set of flags that indicate other things that can interrupt the wait. One of them is this `NOSUSPEND` flag, which is, if the pool suspends while we're waiting, return EAGAIN.

 ZIL fallback sync
void
zil_commit(zilog_t *zilog, uint64_t foid)
{

int err = zil_commit_wait(zilog, foid);
if (err != 0)

txg_wait_synced(zilog->zl_dmu_pool, 0);
}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So with this new tool in hand, we can go back to `zil_commit`, and change it...

 ZIL fallback sync
int
zil_commit(zilog_t *zilog, uint64_t foid)
{

int err = zil_commit_wait(zilog, foid);
if (err != 0) {

err = txg_wait_synced_flags(zilog->zl_dmu_pool, 0,
 TXG_WAIT_F_NOSUSPEND);
if (err == EAGAIN)

err = SET_ERROR(EIO);
}
return (err);

}

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
And here we are! If the pool suspended, zil_commit can return EIO.

Note
If you know anything about the ZIL code, you know that I am being extremely economical with the truth here. There's actually a lot more going on in the implementation to make this work, mostly around how the entries on the in-memory log are handled and cleaned up when flushing them out has failed. I'm happy to talk about it more but it's very inside baseball and in the end it's all the same shape: find the places where `txg_wait_synced` is called, and figure out how to untangle them.

Forbidden
knowledge

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
It's all very well to unstick all this, but it's not helpful if applications that worked fine before suddenly start misbehaving because we started returning errors they weren't expecting. We need to know what we're asserting if we start returning `EIO`, and how applications will respond.

Note
A quick quiz about your fsync() knowledge. This is more fun if the people in the room who do know the horrible truth pretend it's a simpler time, when they didn't.

so very quickly, who knows what you should do if fsync() returns failure?

- ignore it?
- crash?
- call it again?

And if you do ignore it, and your future IO succeeds, what does that mean?

What if you call fsync again, and that succeeds. What does that mean?

Remember your answers; let's see if this story changes your mind.

 fsyncgate
postgres does async writes, which go to the page cache

kernel page flush begins. Some writes fail
kernel sets an failed flag on those pages, but can't inform application

postgres begins writing a checkpoint, calls fsync()
kernel returns EIO because there are failed pages

kernel clears the failed and dirty flags
postgres aborts the checkpoint
postgres does async writes, begins a new checkpoint, calls fsync()

more-recently-dirtied pages are flushed, fsync() returns success

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
"fsyncgate" is a somewhat tongue-in-cheek name for some discussions between the PostgreSQL and Linux developers in 2018. One of the Postgres devs discovered that a data corruption after a storage failure, even thought a successful checkpoint had happened. If you search for "fsyncgate" you'll find lots about it; ask me later or see this link and I'll give you more info. This is the sequence of events.

Pg expects that everything is now flushed, but the dirty pages “behind” the first `fsync()` are not and will never be, and will eventually be lost when they are evicted from the page cache.

So this surprised a few people, and fingers were swiftly pointed at those foolish Linux people for "breaking POSIX" and other such nonsense, and there's no doubt that it definitely went against some intuition.

 Royal decree
POSIX (IEEE Std 1003.1-2017):

The fsync() function shall request that all data for the open file descriptor named
by fildes is to be transferred to the storage device associated with the file
described by fildes . The nature of the transfer is implementation-defined. The
fsync() function shall not return until the system has completed that action or

until an error is detected.

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
This is the entire definition of `fsync()`'s function.

 Royal decree
POSIX (IEEE Std 1003.1-2017):

The fsync() function shall request that all data for the open file descriptor named
by fildes is to be transferred to the storage device associated with the file
described by fildes . The nature of the transfer is implementation-defined. The
fsync() function shall not return until the system has completed that action or

until an error is detected.

If the fsync() function fails, outstanding I/O operations are not guaranteed to
have been completed.

EIO : An I/O error occurred while reading from or writing to the file system.

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
And this extra bit is from its return and errors sections.

There's a little more discussion in the spec about why it's so underspecified. Mostly, it's because POSIX wants to support an implementation that doesn't have a buffer cache, or even non-volatile storage.

It also says _nothing_ about what happens after error.

 Page flags
Three page flags:

dirty: needs to be written out
error: last write attempt failed
invalid: page is unuseable and can be freed

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
For most systems with a Unix heritage, or clones, this all comes down to the how page cache flags are modified by IO.

A dirty page will be written out by the OS at some time in the future.

The error flag indicates that the last write attempt failed. `fsync()` will return `EIO` if any error flags are set, or success if they're all clear.

An invalid page is unuseable, usually just waiting to be reclaimed by the kernel.

Last year I did a survey to try to understand the differences between operating systems. Keep in mind this was a year ago, and this was not a deep study, so assume I'm at least a bit wrong on each until you check.

 Page flags: FreeBSD < 4
flush failure: sets page error flag, leaves dirty flag set
fsync() error: sets invalid (page unuseable, will be freed)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: FreeBSD ≥ 4
flush failure: sets page error flag, leaves dirty flag set
fsync() error: clears error, leaves dirty set (will retry)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: FreeBSD ≥ 12
flush failure: sets page error flag, leaves dirty flag set
fsync() error:

ENXIO : sets invalid (page unuseable, will be freed)

other errors: clears error, leaves dirty set (will retry)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: Linux
flush failure: sets page error flag, clears dirty flag
fsync() error: clears error flag (NOT INVALIDATED)

this is weird

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: DragonflyBSD
flush failure: sets page error flag, leaves dirty flag set
fsync() error: clears error, leaves dirty set (will retry)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: NetBSD
flush failure: sets page error flag, leaves dirty flag set
fsync() error: sets invalid (page unuseable, will be freed)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: OpenBSD
flush failure: sets page error flag, leaves dirty flag set
fsync() error:

sets invalid (page unuseable, will be freed)
marks the vnode damaged

all future fsync() calls return EIO until the vnode is freed (that is, all file
descriptors closed)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: macOS (Darwin/XNU)
flush failure: sets page error flag, leaves dirty flag set
fsync() error: sets invalid (page unuseable, will be freed)

(but maybe other stuff because ©™®)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Page flags: Illumos
flush failure: sets page error flag, clears dirty flag
fsync() error: clears error flag, leaves dirty set (will retry)

if the flush fails again, puts page on free list with delayed write flag set
(I confess I do not fully understand this)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
So as you see, there's a bit of variety. Certainly nothing to say that applications have any reasonable expectation of anything after fsync returns EIO. So that's a point in our favour.

Application
response

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
I also had a look a few applications and libraries, to see how they responded. There's a few categories of failure.

As before, this was not a rigorous study, so don't trust me without checking.

 Application response: explicit abort/panic
PostgreSQL
MySQL (InnoDB)
MongoDB (WiredTiger)

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
PostgreSQL is kinda "patient zero". After fsyncgate, they switched to panicking on fsync() failure, which invokes their own data recover mechanisms. There's some deeply-baked assumptions about fsync() that couldn't easily be corrected, and since Linux is their primary platform, they didn't have much choice.

MySQL's InnoDB followed suit not long after.

And so did MongoDB. Weird example maybe, but I have a friend that works at Mongo so it's still in my eyeline more than many others.

This seems like the best response for a database. In a way they're not so different from a filesystme; they know their own data and have their own recovery mechanisms; makes sense to activate though and get more control.

 Application response: assume success
SQLite
Xapian

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Some just ignore the fsync() return and keep going.

SQLite surprised me! They explicitly say in their documentation that they assume flush and fsync always succeed, and good luck if your OS doesn't guarantee that. It's not clear to me if this is actually true; fsync() errors are propagated to the upper layers, but not always checked.

Xapian is a search engine. It calls fsync(), but only sometimes checks the error code, and sometimes does nothing in response. So it would seem that that's not going to work well after a suspend.

 Application response: attempt to recover
Redis (with AOF)
Cyrus

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Redis with an AOF journal in fsync mode will panic if the fsync() to the journal fails. But, this is not the default. In the default journal mode, or with no journal, Redis aggressively retries fsync() if it fais, which as we know, on Linux will appear to succeed.

Cyrus is a mail server I used to run. It uses a journaled key/value store for its metadata, whch uses fsync() carefully to implement a three-phase commit process. In the very worst case, an fsync() failure will trigger corruption recovery code, which will abdandon the store it was trying to write to, create a new one and copy the data from the old one into it. These leaves it open to copying corruption from the old file into the new.

 Application response: generic IO error

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

Note
Most casual use of fsync() that I could find seem to just treat it as a plain old IO error. Usually that means it aborts an operation or transaction, and log something. On platforms that don't retry, this like means losing the write.

 EIO
no uniformity, no expectations

we can do what we want!
question: keep data dirty and retry, or invalidate and free?
or: is this failure transient or permanent?

transient: pool will unsuspend soon
permanent: pool will never return

decision: treat errors as transient
ZFS pools are usually planned and managed
it probably is coming back; we should wait.

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Status report
In production at a customer site
Needs to be forward-ported from 2.1.5
Forced export needs to be finished and merged
Add a new failmode=error to enable this behaviour

Needs heavy testing; very invasive in the ZIL code
Hope to finish and land before end of 2024

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

 Future work
failmode=readonly

all writes return EROFS

may help applications avoid thei recovery codepaths unnecessarily

robn.au/fsync-zilWhy fsync() on OpenZFS can't fail

