
Note
SOUND CHECK

Dirty deals:
the story of a data corruption bug in OpenZFS
Rob Norris, Klara Inc.

Hello!

Note
Hi! Thanks for coming along.
★

#robnfacts
He/him
Australian

One wife, two cats, three kids
1989 - 1999: Kid messing with
computers
1999 - 2023: Linux sysadmin
2023 -: OpenZFS developer
2023 -: one FreeBSD server
Hundreds of side-projects and dumb
experiments

Note
You probably don't know who I am. My name is Rob. Here's a few quick facts.
★ I've some pronouns
★ I'm from Australia. You might have recognised the accent.
★ Here's some flags I like
★ There's some family at home, very nice
★ I've been banging on computers most of my life
★ Then spent a bunch of time taking care of other people's computers, using something called Linux; you probably haven't heard of it
★ Then last year I jumped into OpenZFS development full time
★ And I have a FreeBSD server of my own now, which is how I got past the guards
★ 35 years of messing around means I have a lot of silly ideas and non-working experiments lying around. I'm sure some of you are familiar with this!

November
2023

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
So lets go back in time a few months and set the scene.

 November 2023
 Thanksgiving long weekend (USA & Canada)

Home alone (sort of)
OpenZFS 2.2.0
FreeBSD 14

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
★ It was the Thanksgiving weekend in the USA & Canada, so things were pretty quiet at work. In Australia we don't do Thanksgiving, so I was mostly just having a normal week. I had two more days of interesting work lined up before the weekend and was happy about it.

★ My wife was away on a long-planned holiday, with me and the kids at home. Fortunately they're teenagers and can look after themselves, and I already work from home, so this mostly meant more time for hacking in the evenings.

★ OpenZFS 2.2.0 recently released, with "block cloning" feature, which had already gained something of a reputation for instability. I'm not entirely sure where that reputation had come from; in my opinion it wasn't entirely wrong, but was at least overblown.

★ FreeBSD 14 also recently released, which included OpenZFS 2.2.0 but had disabled block cloning by default (via a sysctl).

So that's the rough position: not many people around, me with a bit more spare time than normal, and rumours of bugs circling. A perfect combination!

 Bug report
#15526 some copied files are corrupted (chunks replaced by zeros)
https://github.com/openzfs/zfs/issues/15526

Compiling a Go program
Reading and writing the same files in parallel
Reading all-zeroes instead real data

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

https://github.com/openzfs/zfs/issues/15526
Note
A couple of weeks earlier a bug had been reported.

★ Someone was compiling a Go program

★ This is a highly parallel workload, writing fies and reading them back

★ Sometimes OpenZFS would return all-zeroes instead of the true file data

 Bug report
#15526 some copied files are corrupted (chunks replaced by zeros)
https://github.com/openzfs/zfs/issues/15526

OpenZFS 2.2.0
Coreutils 9.2

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

https://github.com/openzfs/zfs/issues/15526
Note
A few people managed to reproduce it.

★ It was only reproducible on OpenZFS 2.2.0

★ It needed a sufficiently new version of GNU Coreutils, which also knows how to invoke block cloning functionality

No one
ever got fired
for blaming
block cloning

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Given the current state of things, guessing that block cloning was involved wasn't unreasonable, even without any evidence.

So a patch was hastily put together to also disable it by default on Linux, and OpenZFS 2.2.1 was released.

But we kept working on it in the issue tracker, trying different things, making different theories.

And then.

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
It was reproduced in OpenZFS 2.1, which doesn't have block cloning. So it can't have been block cloning at fault.

Note
So that was pretty great news because honestly, that poor block cloning feature has suffered enough and doesn't deserve this.

Note
But also, oh no.

DATA
CORRUPTION

Note
This of course is OpenZFS' worst nightmare. If we have only one job, its to not lose data.

And at this point, word had started to get out. People were turning up on the issue tracker, in forums, in chats, and wondering if pools they'd had for years or sometimes decades might have quietly lost data.

That seemed unlikely, but once people start asking existential questions you have a problem. So I decided to abandon my plans for the rest of the week and get involved in both understanding the problem and trying to calm things down.

And this talk is that story!

Filesystem
lesson

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Alright, so to understand the bug, we first have to understand a few things about how OpenZFS does its work.

 What is a file, really?

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
* Under the hood, OpenZFS is an object store.
* Top-level object is an "object set" or "objset". Think of it as a giant array of objects.
* Each object has two parts:
** "dnode", a metadata header that has the objects type, size, etc and points ot its first data block
** the object data, a series of data blocks

This is a very simplified view, showing the list of objects, the count of blocks, and a list of data blocks.

All the higher-level filesystem concepts like directories and permissions and symlinks and whatever else are just built out of different kinds of objects that OpenZFS interprets in particular ways.

 Not all data is data

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Its pretty common to have large regions of a file that are empty, that is, all-zeroes.

We can save space by not storing those zeroes, but instead storing a note that says "this block is all-zeroes".

We call that a "hole".

This whole bug comes from working with holes.

 The fastest disks are memory

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Disks are slow, even fast disks. So when you make a change to a file, we make that change in memory, and then later apply that change to disk.

So we can batch up all the changes, and also, if you've made multiple changes to the same file, we only have to write the final state, not all the in-between state.

We need extra housekeeping in memory so we know what to write out. We call the changed things "dirty" (these bits in red), and we keep some link lists to track all the dirty parts.

The objset has a list of dirty dnodes, and each dnode has a list of dirty blocks. So we make some changes, and we have some lists of things ready to be written.

Important note: until that stuff is written, its only in memory. Anything that wants to consider the "latest" version of an object has to understand how to look at the dirty lists.

 Data first

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Finally, a word on the order things are written down.

 Data first

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
First, the dirty data blocks are written.

 Data first

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Then, the dirty dnodes are written, and now the latest state is safely on disk.

Note
That's the lesson. Congratulations, you just leveled up your OpenZFS skill!

Beware
of holes

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
This bug is centreed around detecting holes.

Sometimes app wants to know where the holes are. A file copying program is a good example. Reads from one, writes to another. If it can know there's a hole, then it doesn't have to read, and it can tell the filesystem to write a hole, saving space and time.

 Hole detection: lseek()

 #include <unistd.h>

 off_t lseek(int fildes, off_t offset, int whence);

SEEK_HOLE : move to start of next hole

SEEK_DATA : move to start of next real non-hole data

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
This is the standard `lseek()` syscall, which is used to change the "current" position in the file.

There's two special values for `whence` related to holes.

`SEEK_HOLE` moves to the next hole

`SEEK_DATA` moves to the next real non-hole data

Its important to note that in a naive implementation, its always safe to return "not found" for `SEEK_HOLE`, and to return hole positions for `SEEK_DATA`. A run of zeroes is still real data; all of this hole stuff is a performance optimisation. Caling "data" where there's a hole is perfectly safe, just less efficient.

 Hidden dirt
Holes only exist once stored
Can't tell if a dirty block will be stored as a hole

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
So OpenZFS has a couple of interesting quirks when it comes to holes.

Holes only exist once stored. They're stored as a zero-length block pointer.

But more importantly, we don't know if a dirty block will eventually be stored as a hole. Deciding to store a block as a hole is actually done by the block compression system, which is part of the IO layer, far away from the object management layer.

Note
Taken together, this means that to accurately detect holes on a dirty object, we have to wait until the object is no longer dirty. That is, we need to have a working dirty object check.

 Finding dirt

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Recall how we track dirty things:
- each objset carries a list of dirty dnodes
- each dnode carries a list of dirty objects

 Finding dirt

 multilist_link_active(&dn->dn_dirty_link)

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
When this all blew up, this was the entire dirty check for a dnode.

This `dn_dirty_link` field is the housekeeping data for the dnodes position on a list.

So the question this is asking is not actually an affirmative "is this dnode dirty?"

Rather, its dirtiness is implied by whether or not the dnode is on any list.

 Finding dirt

 multilist_link_active(&dn->dn_dirty_link)

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
This is what actually happened.

During the dnode writing process, the dnode is briefly removed from the objsets "dirty" list and added to its "syncing" list, that is, the list of dnodes to be written out.

The same "link" field list node is used for both, because a dnode can never be on both lists at the same time.

But it means there's a brief moment where the dnode is not on a list, even though it still has dirty blocks. Its a tiny gap; we think probably in the tens of machine instructions. Really hard to hit, but possible.

 Finding dirt

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
And so if `lseek()` comes through at this moment, it thinks the object is clean, and because the dnode says the object is five blocks long, but there's only three blocks on disk, the last two are assumed to be holes.

Its only `lseek()` that's wrong; if the caller had tried to read those blocks instead, it would have got the data, because that's a whole different mechanism.

Hole
copying

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
This issue became visible because of `/bin/cp` from GNU Coreutils, which is the "standard" implementation of `cp` on Linux. It recently started using `lseek()` to discover holes in source files.

 Hole copying

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
So when a new file is created, it starts life like this. A single dnode, length 0, no data.

 Hole copying

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
When we add some data, it looks like this. A dirty data block, and a dirty dnode.

 Hole copying

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
If we manage to hit the gap when doing a dirty check, it looks like this. Length one, but no data.

 Hole copying

 off_t offset = lseek(srcfd, 0, SEEK_DATA);
 if (offset < 0 && errno == ENXIO) {
 ftruncate(dstfd, srclen);
 }

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Coreutils `cp` opens like this. It asks for the position of the first real data from the start of the file, and gets a special return that says "there's no data anywhere".

So to do its "copy", it skips reading altogether, and just requests that the destination file be made as large as the source, with no data.

And anyone reading the destination file is going to see all-zeroes.

Plugging
the hole

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Ok so, problem understood. The problem is that its very subtle, and the "right" fix is complicated in a whole bunch of ways because of how dnode state is tracked and used throughout all of OpenZFS.

But we needed to do something, so we just extended the dirty check.

 Plugging the hole
diff --git module/zfs/dnode.c module/zfs/dnode.c
index 029d9df8a..7ae74ad13 100644
--- module/zfs/dnode.c
+++ module/zfs/dnode.c
@@ -1786,7 +1793,8 @@ dnode_is_dirty(dnode_t *dn)
 mutex_enter(&dn->dn_mtx);

 for (int i = 0; i < TXG_SIZE; i++) {
- if (multilist_link_active(&dn->dn_dirty_link[i])) {
+ if (multilist_link_active(&dn->dn_dirty_link[i]) ||
+ !list_is_empty(&dn->dn_dirty_records[i])) {
 mutex_exit(&dn->dn_mtx);
 return (B_TRUE);
 }

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Note
Here, we're just extending the dirty check to check both if the dnode is on a list, and if the dnode has any attached dirty records tracking dirty data blocks.

The idea is that in that gap, the dnode is being moved to the syncing list so that it can later be written. Therefore, there must be something to write, so there must be something on the list of dirty records.

This is not actually a complete fix, because there are operations modify the dnode alone, without modifying any data, so there won't be any dirty blocks. However, we're pretty sure there are no operations that can modify the dnode that also result in a change to what lseek could return, so that makes this an adequate fix.

The best fix is likely to be to keep an explicit marker on the dnode itself, but it needs a lot more thought.

 Plugging the hole
2023-11-28: Patch posted and accepted (GH#15571)

Backport for 2.2.x (GH#15579)
Backport for 2.1.x (GH#15578)
Backport for 2.0, 0.8, 0.7, 0.6 available

2023-11-28: OpenZFS 2.2.2 released
2023-12-01: FreeBSD errata issued (FreeBSD-EN-23:16.openzfs)

14.0-RELEASE-p1
13.2-RELEASE-p6
12.4-RELEASE-p8

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 Plugging the hole
2023-12-03: Illumos patched (#16087)
2024-02-12: Ubuntu 23.10 updated (OpenZFS 2.2.0)
2024-03-12: Ubuntu 22.04 updated (OpenZFS 2.1.5)
2024-03-13: Ubuntu 20.04 updated (OpenZFS 0.8.3)

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

History
lesson

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 History lesson
Reproduced back to ZFS-on-Linux 0.6.5
Reproduced in FreeBSD 12 & 13
Reproduced in Illumos (current)
Attempts to confirm in old Sun ZFS difficult

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 History lesson
2006: proto-bug introduced in Sun ZFS

for (i = 0; i < TXG_SIZE; i++) {
- if (dn->dn_dirtyblksz[i])
+ if (list_link_active(&dn->dn_dirty_link[i]))

break;
}

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 History lesson
Mar 2017: 66aca24 SEEK_HOLE should not block on txg_wait_synced()

- for (i = 0; i < TXG_SIZE; i++) {
- if (list_link_active(&dn->dn_dirty_link[i]))
- break;
+ if (dn->dn_dirtyctx != DN_UNDIRTIED) {
+ for (i = 0; i < TXG_SIZE; i++) {
+ if (!list_is_empty(&dn->dn_dirty_records[i])) {
+ clean = B_FALSE;
+ break;
+ }
+ }

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 History lesson
Nov 2017: 454365b Fix dirty check in dmu_offset_next()

- if (dn->dn_dirtyctx != DN_UNDIRTIED) {
- for (i = 0; i < TXG_SIZE; i++) {
- if (!list_is_empty(&dn->dn_dirty_records[i])) {
- clean = B_FALSE;
- break;
- }
+ for (i = 0; i < TXG_SIZE; i++) {
+ if (list_link_active(&dn->dn_dirty_link[i])) {
+ clean = B_FALSE;
+ break;

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 History lesson
Mar 2019: ec4f9b8 Report holes when there are only metadata changes

for (i = 0; i < TXG_SIZE; i++) {
if (multilist_link_active(&dn->dn_dirty_link[i])) {

+
+ list_t *list = &dn->dn_dirty_records[i];
+ [checks against dn_dirty_records]

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 History lesson
May 2019: 2531ce3 Revert "Report holes when there are only metadata changes"

for (i = 0; i < TXG_SIZE; i++) {
if (multilist_link_active(&dn->dn_dirty_link[i])) {

-
- list_t *list = &dn->dn_dirty_records[i];
- [checks against dn_dirty_records]

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

 History lesson
Nov 2021: de198f2 Fix lseek(SEEK_DATA/SEEK_HOLE) mmap consistency

- for (i = 0; i < TXG_SIZE; i++) {
- if (list_link_active(&dn->dn_dirty_link[i]))
- break;
+ if (dn->dn_dirtyctx != DN_UNDIRTIED) {
+ for (i = 0; i < TXG_SIZE; i++) {
+ if (!list_is_empty(&dn->dn_dirty_records[i])) {
+ clean = B_FALSE;
+ break;
+ }
+ }

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Instant
community

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

People need
to eat

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

Conclusion

robn.au/dirty-dnodesDirty deals: the story of a data corruption bug in OpenZFS

