


 TFCon presents

 GOOD COMPUTER 



Note
So you might remember that I took a couple of months off earlier this year.



GENERALISED


ANXIETY


DISORDER

Note
That was nice. Ask me anything.



Note
Anyway, I had to find something to do with my time in between making sure my kids went to school, doing some long-neglected jobs around the house and contemplating my place in the universe.



Note
So I decided to do the most obvious thing. I decided to build a new computer.

I've had some ideas about this for a long time, but to understand those I should tell you about my formative computing experiences.



Note
When I was 8, I found a book in the library.



Note
Its great, its these monsters teaching you how to program. There's like 30 books in this series.



Note
You type in the programs, and run them, and then it offers suggestions for how to change or extend the program. Its really fun and not at all patronising. I love it.



Note
It even has a page on debugging!



Note
So I read this book, and others like it, and nagged my parents enough that they got a secondhand Commodore 64 for the family.

Now this is not mine, just wanted to show a "typical" setup. Although this has a dedicated monitor and even desk, it was just as common that you'd plug the computer into the family TV.

Most "home" computers at the time were like this. There were lots of them: Commodore, Acorn, Atari, Apple, Sinclair, Radio Shack, Amstrad, and a bunch more.



Note
I found this great photo gallery of people using their C64s at home. This matches my memory much better. It was years before we had a dedicated space for our computer. Mostly, it was just near the TV somewhere, and you'd put it away when you were done.



Note
So anyway, you'd plug them in and switch them on and they'd boot straight into the BASIC, which was sort of a programming language and operating system in one (sort of like the Unix shell in concept).



Note
And you could just start typing a program right there.



Note
And you run it and stuff happens, right there.

So the computer kind of encouraged you to write programs and experiment from the moment you turned it on. Which is what I did, and so here I am!

Every home computer had BASIC. In fact, you kinda couldn't ship one without it; every computer needed an operating system, and the expectation was that it would be BASIC. There were thousands of books and magazines that had BASIC program listings, and if you didn't have BASIC, you wouldn't have much software and so wouldn't likely wouldn't get very far.



Note
So this idea of a computer that you just turn on and it encourages you from the first moment to play and learn how to program has been appealing to me for a long time.

So I sort of used that as a vague idea when deciding what, exactly to build.



 GOOD COMPUTER 

A late-70s/early-80s computer, made in 2020

8-bit

BASIC

Written in assembly

Easy to connect to other things

(Pandemic-resistant)

Note
So I decided to build a 70/80s-style computer, or at least what I estimated to be the defining characteristics of them.

Everything was 8-bit in those days. "X bits" as a term kinda got confused in the years since then, but here I mean the size of the data you can easily operate on. 8-bit tends to mean a certain simplicity in the way code is written and data is managed, particularly when connecting to other devices.

BASIC, well, we talked about that. I want to be able to type in and run programs from pretty much any of those books and magazines. More importantly, I want to be able to write and run programs directly on the computer, without needing another computer to do it. Which means it needs a language available right there.

Everything written in assembly! Partly because I like assembly (I wrote a lot of it in the 90s), partly because I don't want to write C or Rust or anything for a definitely non-work project, and partly because that's kind of all you had in the 70s.

I want to flash lights, try out displays and keypads and other bits and pieces. If nothing else, because I need to see what its doing!

And ideally, made of parts that I already have at home, because shipping anything looked it might be just about impossible back in June.



MOS KIM-1

6502 CPU

8x 6102 SRAM (1024 bytes)

2x 6530 RRIOT

ROM (1024 bytes)

SRAM (64 bytes)

16 IO pins

programmable interval
timer

6x 7-segment LED display

Keypad

Note
My inspiration is this thing. This is the MOS KIM-1, which was a development board made by MOS, Commodore's in-house chip design and fabrication group. The 6502 and its support chips were one of the big players in the 8-bit era, powering the Commodore, Apple, Atari, Acorn, Nintendo and others. This board was released in 1976 and sold as a development and demo kit but was cheap enough that hobbyists could buy one and get a pretty complete computer for the time.



Microchip ATmega8

megaAVR CPU core

8KB Flash program memory

1KB SRAM

Multiple peripheral devices

SPI/I2C/2wire/1wire buses

USART (serial port)

Various A/D & D/A
converters

Various timers

Note
So this is the chip I like. Its a modern 8-bit CPU with tons of useful tools right there on the chip. Except for the big display and keypad, this is everything that the KIM-1 board had on a single chip plus a ton more stuff, much much faster and using much less power.

Incidentally, this is the chip at the heart of the Arduino boards for many many years. These days the "standard" Arduinos use a smaller and more powerful version of this chip, but with the same core.

You wouldn't really use this chip for a real computer. Then again, the designer of the 6502 never dreamed that you'd make a real computer out of it - he expected it to be used for industrial processes and pinball machines.



Note
This is my "version 1" board, that I did months of development work on. There's a lot going on here, but its all fairly sensible - its mostly just following the reference design from the ATmega docs.

The big chip is the ATmega8. The little chip to its right is a 128KB serial RAM, which I added mid-way through writing my BASIC implementation because 1KB doesn't get you much of BASIC program once you use most of it for housekeeping.

One of the LEDs is for reporting program errors and crashes to me. The other is controllable from BASIC.

The little green thing in the top-left is a USB serial port bridge, so I can talk to the CPU serial port from my laptop. In lieu of a real keyboard and screen, that's been my main way of interacting with the system.

The board at bottom left is an Arduino variant. I'm using it as the flash programmer, so I can upload my assembly code onto the ATmega. It's only for programming; once you load the program onto the chip, that whole thing can be disconnected.



Note
This is the current build. Basically the same, just more compact and "permanent". The programmer is now off-board; I just connect wires when I need it.



HELLO

WORLD

Note
So like any new programming environment, the first thing we want to do is make sure that everything works. In this case, is our wiring correct, and can we actually load a program onto it?

The standard "hello world" for hardware is to blink a light, as its about the simplest useful program we could write.



.include "m8def.inc"

.cseg

.org 0x0000

rjmp reset      ; any reset source 

reti ; external interrupt request 0

reti ; external interrupt request 1

reti ; timer/counter2 compare match

reti ; timer/counter2 overflow

reti ; timer/counter1 capture event

reti ; timer/counter1 compare match A

reti ; timer/counter1 compare match B

reti ; timer/counter1 overflow

reti ; timer/counter0 overflow

reti ; serial transfer complete

reti ; USART Rx complete

reti ; USART data register empty

reti ; USART Tx complete

reti ; ADC conversion complete

reti ; EEPROM ready

reti ; analog comparator

reti ; two-wire serial interface

reti ; store program memory ready

Note
I'm not going to show walls and walls of assembly code, I promise!

At the top we load the definitions for this particular AVR part, which will have things like where it's flash and static memory is, where its IO ports are, etc. More directives follow to tell the assembler (that is, the compiler) how to layout the output file.

So when the CPU starts up, it jumps to the "reset vector", which is just the very first instruction in program memory. In this case it does a "relative jump" to the `reset` label.

There's lots of vectors, for all the different interrupt sources. Interrupts are a bit like signals in Unix - they cause the program to stop what its doing and another bit of code to be executed. Interrupts could be generated by a timer expiring, or a button being pressed, or some activity from an external device, or your own code.

Here, we're say the "handler" for pretty much all of the interrupts is just the "return from interrupt" instruction. In practice they'll never be called, because we don't enable those interrupt sources, but this is the conventional boilerplate for a new program.



reset:

ldi r16, low(RAMEND)

ldi r17, high(RAMEND)

out SPL, r16

out SPH, r17

Note
Here's `reset`. Note that this isn't a function or any other program structure. `reset` is just a label for a position in memory, and doesn't appear in the final code that is delivered to the CPU.

So we start off by setting up the CPU stack. The CPU needs some RAM for housekeeping, like storing the return location when the code does a subroutine call (or an interrupt arrives). Usually a stack "push" stores a value at the memory location pointed by the stack pointer, then moves the stack pointer down. A "pop" does the reverse: moves the stack pointer up, then gets the value from memory. So here we set the stack pointer `SP` to the last location in memory `RAMEND`.

This is an 8-bit processor, so it has 8-bit registers. Memory locations are 16-bit though, so we need two registers to deal with a 16-bit value. `low()` takes the bottom 8 bytes of a value, `high()` takes the top 8, and the `SP` register is actually spread across two 8-bit registers. You get used to this pattern.



ldi r16, 1<<PB0

out DDRB, r16

Note
Ok, so this is how we set up to be able to blink the LED. This particular chip has a couple of 8-bit IO ports, which means that a bunch of pins on the chip are individually controllable by the program.

I've connected the LED to pin 0 of port B, that is, PB0.

So here, we're getting the bit value for that port, and we're setting it in the Data Direction Register for port B. A bit set in the DDR turns the pin into an "output" pin, that we can set on or off. A zero DDR bit makes the pin an "input", neither on or off until something external to the chip makes it so. Setting a pin to output is known as "driving" the pin. They default to off because driving an external device during reset could result in weird things happening. Not so much for us, but these chips are used in lots of industrial control applications, cars, that's sort of thing. You really don't want the circular saw to spin when the program crashes!



loop:

sbi PORTB, PB0

rcall wait

cbi PORTB, PB0

rcall wait

rjmp loop

Note
So now we get into the main loop. We don't have to return from reset or jump here, the program just continues. Labels aren't real!

This is straightforward. `sbi` is "set bit in IO register", `cbi` is "clear bit". So we set PB0, turning the light on, then we clear it, turning it off, then jump back to the start, with a call to a "wait" subroutine in between to slow things down.



wait:

ldi r16, 30

clr r17

clr r18

dec r18

brne PC-1

dec r17

brne PC-3

dec r16

brne PC-5

ret

Note
And this is the wait function. This is just a nested loop that does nothing except consume cycles.



wait:

ldi r16, 30 ;       uint8_t r16 = 30;

clr r17 ;       uint8_t r17 = 0;

clr r18 ;       uint8_t r18 = 0;

dec r18 ; loop: r18--;

brne PC-1 ;       if (r18 != 0) goto loop;

dec r17 ;       r17--;

brne PC-3 ;       if (r17 != 0) goto loop;

dec r16 ;       r16--;

brne PC-5 ;       if (r16 != 0) goto loop;

ret

Note
A literal conversion to C might look something like this. It's relying on the fact that adding or subtracting from registers will overflow sensibly.

You might think its weird to see code that is expressly busy-waiting. Of course you wouldn't do this on a real computer, because that's processing time that could be used by other tasks. For this though, we own 100% of the computer, so we can do anything we like.

The only reason you might not want to do it this way is because of power consumption. There is a way to set a timer that will wake the CPU (with an interrupt), then go to sleep. It's fiddly though. It totally depends on your application. I'm not in a low-power environment, so I don't care.



$ avra blink.asm

Pass 1...

Pass 2...

done

Assembly complete with no errors.

Segment usage:

   Code      :        51 words (102 bytes)

   Data      :         0 bytes

   EEPROM    :         0 bytes

Note
Assemble the program. There's a few different assemblers around, all of them terrible in my opinion. I use `avra` because its written in C, so I can hack out the things that annoy me most.



$ avrdude -v -c arduino -P /dev/ttyACM0 -p m88p -U flash:w:blink.hex:i

...

avrdude: AVR device initialized and ready to accept instructions

Reading | ################################################## | 100% 0.00s

avrdude: Device signature = 0x1e930f (probably m88p)

avrdude: safemode: lfuse reads as FF

avrdude: safemode: hfuse reads as DF

avrdude: safemode: efuse reads as F9

avrdude: NOTE: "flash" memory has been specified, an erase cycle will be performed

         To disable this feature, specify the -D option.

avrdude: erasing chip

avrdude: reading input file "blink.hex"

avrdude: writing flash (102 bytes):

Writing | ################################################## | 100% 0.17s

avrdude: 102 bytes of flash written

avrdude: verifying flash memory against blink.hex:

avrdude: load data flash data from input file blink.hex:

avrdude: input file blink.hex contains 102 bytes

avrdude: reading on-chip flash data:

Reading | ################################################## | 100% 0.11s

avrdude: verifying ...

avrdude: 102 bytes of flash verified

avrdude: safemode: lfuse reads as FF

avrdude: safemode: hfuse reads as DF

avrdude: safemode: efuse reads as F9

avrdude: safemode: Fuses OK (E:F9, H:DF, L:FF)

avrdude done.  Thank you.

Note
And then you hand the program off to the programmer, which arranges for it to be written to the chip.



Note
Then the CPU gets an immediate reset, and off it goes!



Note
So being able to blink a light is great and you can actually get a lot of mileage out of that, especially if you add more lights, different coloured lights, that sort of thing and then you can report on all sorts of things.

But I want to talk to my computer. I want an interactive text thing, like the computers of old. So I need a way to type, and I need a way to show text.



Note
But this is .. hard.

I'm definitely not going to show a lot of circuit diagrams, more I just want to give an idea of complexity.

This is part of the C64 schematic devoted to the keyboard connector. Internally there's 16 lines connected to two 8-bit IO ports on one of the IO interface chips. 8 lines are for "row", 8 lines are for "column", so you look at the combination you get and from there you can determine which key is down. This is actually pretty straightforward, but there's a lot of wiring.



Note
But this is a really mad thing. This is the video and sound chips and the circuitry to generate analog video and sound signals suitable for an old-timey TV, where it would literally drive the electromagnets tha direct the electron beam across the phosphor. And a lot of the video stuff, like colour generation, is actually in the video chip itself. And this doesn't show the memory you need to store what's on the screen, and the complicated system required to let the CPU and video chip to both use the same memory. It's wild.

I actually do undertand most of this, and its not impossible that I could build such a thing (and I'd kinda like to actually), but this is definitely way more than I want to chew off for this project.

And its not even the entire problem!



Note
The problem is that its 2020, and I want a computer that I can just plug in to the TV, and maybe just plug in a crappy keyboard that I have lying around. Which means USB and HDMI.

USB is electrically straightforward, but needs a lot of software. HDMI is electrically complex, and also needs a lot of software. Again, this is not insurmountable for a rookie like me, but HDMI in particular requires a lot of specialised hardware to make work properly, and I don't want to be writing this kind of software.



Note
The answer is this.



Note
Actually, the answer is this.



Note
No its really this.

Actually they're all correct, because the real answer is this thing.



Note
What's this one? Right, it's the serial port!

Now these things go way back to 1960. Back then, computers were hulking great boxes and they often had some sort of input/output device connected to them, called "terminals". Dedicated terminal manufacturers started to pop up, but every computer had different features and different connectors. Eventually, they all got together and worked out a standard connector and wire protocol for these things, called RS-232. The full-fat version is a 25-pin connector that has all sorts of fancy features on it. The slimmed-down version is 9-pin, which can do most of what the big fella could do, but really you can get a long way with just three pins: transmit, receive and ground.

And fortunately every computer has one because its what we use to talk to a modem and get onto the information superhighway.

Or we did, back in the 90s. These days, of course, we don't have these.



Note
Goddammit its all just USB again.



Note
That's ok, because the USB boffins made a USB-Serial protocol, so we can have these things.

But does anyone even remember why we're here?



Note
We don't actually care about the electrical characteristics of the serial port. We just want a data line in each direction that both sides understand.



Note
So, here's a tiny little serial module. On one side there's a USB port you can plug straight into your computer, and it will show up as a USB serial device. On the other side, just the raw data lines already at the right logic levels. No weird 60's electrical standards in sight!



Note
This particular AVR has its own serial device directly on the chip, so you just connect the two wires and that's all of it.



; usart tx/rx enable

ldi r16, (1<<RXEN0) | (1<<TXEN0)

sts UCSR0B, r16

; usart frame format: 8N1 (8 data bits => UCSZ2:0 = 011,

; no parity => UPM1:0 = 00, 1 stop bit => USBS = 0)

ldi r16, (1<<UCSZ00) | (1<<UCSZ01)

sts UCSR0C, r16

; usart 38400 baud at 16MHz => UBRR = 25

ldi r16, 25

ldi r17, 0

sts UBRR0L, r16

sts UBRR0H, r17

Note
There's some stuff you have to do to enable the serial device in the AVR and configure it (data rates, error checking,etc), but that's mostly set-and-forget.



; receive a byte from the usart

; outputs:

;   r16: received byte

usart_rx_byte:

lds r16, UCSR0A

sbrs r16, RXC0

rjmp PC-3

lds r16, UDR0

ret

; transmit a byte via the usart

; inputs:

;   r16: byte to send

usart_tx_byte:

push r16

lds r16, UCSR0A

sbrs r16, UDRE0

rjmp PC-3

pop r16

sts UDR0, r16

ret

Note
And then you just need a couple of low-level subroutines to read and write a single byte. The hardware will take care of turning a byte into a stream of bits with the correct timing, so we can get on with other things.



$ grep ^usart_ basic.asm

usart_rx_byte:

usart_rx_byte_maybe:

usart_tx_byte:

usart_print_static:

usart_print:

usart_line_input:

usart_tx_byte_hex:

usart_tx_bytes_hex:

usart_tx_bytes_hex_next:

usart_tx_bytes_hex_done:

Note
And then once you've got those lowlevel subroutines, you can use them to make more powerful things. I've got a stuff to print full null-terminated strings, and a really nice line input routine with editing controls and all sorts. That subroutine is actually really interesting but I won't go into it here.



$ picocom -b 38400 /dev/ttyUSB0

picocom v3.1

port is        : /dev/ttyUSB0

flowcontrol    : none

baudrate is    : 38400

parity is      : none

databits are   : 8

stopbits are   : 1

escape is      : C-a

local echo is  : no

noinit is      : no

noreset is     : no

hangup is      : no

nolock is      : no

send_cmd is    : sz -vv

receive_cmd is : rz -vv -E

imap is        :

omap is        :

emap is        : crcrlf,delbs,

logfile is     : none

initstring     : none

exit_after is  : not set

exit is        : no

Type [C-a] [C-h] to see available commands

Terminal ready

GOOD COMPUTER

BASIC>

Note
So with everything wired up and the ability to use it for input and output, we just need our terminal. There's lots of programs for serial terminals. I use picocom like so. It dumps a bunch of stuff about how the terminal is set up, and then we see whatever the device has to tell us, and we can talk back to it. Brilliant.

So yes, this is a long way short of my dream of just plugging into a TV, but also this is just a side project to stop me going bonkers, so I can do what I want.



SO BASIC



SO, BASIC



A very BASIC history

Dartmouth BASIC (1964)

Microsoft BASIC (1975)

Tiny BASIC (1975)

Integer BASIC (1976)

BBC BASIC (1981)

GW BASIC (1983)

QuickBASIC (1985)

AMOS BASIC (1990)

Visual Basic (1991)

Visual Basic .NET (2001)

Small Basic (2008)

Note
So BASIC got its start at Dartmouth College in New Hampshire in the 60s. The head of the computing department at the time recognised that computers would quickly move out of science and engineering disciplines and into the everyday world, and that the only way that people would be able to make good decisions in such a world would be to have a working understand of computers. Pretty forward thinking!

So, they set out to get computer access to all their students. When they started, they only had a small computer and it only worked with batch jobs. So they had to build a time-sharing system, and then a programming language simple enough for anyone to use, and then get terminals in front of everyone. Eventually the wired up the entire college and surrounding high schools and libraries, and everyone was taught BASIC no matter what they were studying.

The rest of the history of BASIC is deeply entangled with the history of Microsoft. BASIC was Microsoft's first big product, long before Windows or DOS existed. In 1975 Microsoft developed their first BASIC for the Altair 8800, one of the first generally-available hobbyist computers. It was pirated widely, leading to Bill Gates writing a famous open letter denouncing the practice. Shortly afterwards, a group of hobbyists got together to write Tiny BASIC, which was later used in the TRS-80.

Microsoft weren't the only game in town early, in 1976 the Apple-I came out, with Integer BASIC. It was originally designed for games and so had no floating-point capability. The story is complicated, but in 1977 the Apple-II came out with a variant of Microsoft BASIC standard. Acorn released the Atom in 1980 with a BASIC they wrote themselves, which became BBC BASIC in 1981.

Along the way lots of other computers came out, almost always running a variant of Microsoft BASIC. IBM licensed Microsoft BASIC for the PC, but in 1983 Microsoft released their own variant directly. Then its almost all the Microsoft show. QuickBASIC followed not long afterwards, which had a lot of structured programming elements (proper conditional and loop constructs, not just line numbers) and some simple object-orientation features. By this time Microsoft pretty much owned all the BASICs, and of course Windows first arrived that year too.

AMOS was an interesting diversion, it was a game-creation system for Amiga that had a brand new version of BASIC in it, unrelated to any others already available. It was actually used for a few commercial games, and was receiving updates until 2019! AMOS2, when and if it finally arrives, will use JavaScript.

Then there was Visual Basic, and later Visual Basic .NET, which is still a real thing. Microsoft also released Small Basic in 2008, which was sort of meant to be a slimmed down BASIC for education. It still exists. It's fine.

There's been other BASICs over the years, but the point is: it's been everywhere, it still exists, and its mostly a Microsoft show. Extremely normal.



10 PRINT "How many stars do you want?"

20 INPUT N

30 LET S$ = ""

40 FOR I = 1 TO N

50 LET S$ = S$ + "*"

60 NEXT I

70 PRINT S$

Note
This is a very simple BASIC program, of the style you might find up until around 1985 when QuickBASIC came out and added more structured programming tools.

You have line numbers down the left, which are part of the program: they're used to order the lines for run, and also for jump targets. You have simple numeric and string variables; strings have a dollar sign after them. You have simple input and output facilities, a simple for loop construct, and a few other bits and pieces. Every computer had a slightly different dialect, and often extensions to support the available hardware (like sound or graphics or disk or printer commands). But that's the basic shape.

God I have to stop saying basic.



BASIC> RUN

How many stars do you want?

INPUT? 5

*****

BASIC> RUN

How many stars do you want?

INPUT? 10

**********

Note
And so there's a couple of runs of this program on my little computer.

Obviously, its a simple language, and doesn't help you a lot. On the other hand, it can be implemented in a very small amount of space, and you get very immediate feedback, which makes it great for just experimenting.



Note
The first run of this talk had a lot of technical detail about my implementation, which put me to sleep, so you definitely had no chance.



GOOD BASIC (2020)

Note
So instead I'll just read from the sales brochure.



GOOD BASIC (2020)

Keywords

Variables: LET, FOR

Conditionals: IF/THEN

Flow control: FOR/NEXT, GOTO, GOSUB/RETURN

Program control: NEW, CLEAR, RUN, END

IO: PRINT, INPUT

Hardware: ON, OFF, SLEEP, RESET

Fancy: XLOAD (XMODEM receiver)

Note
It's got all the standard BASIC bits.

With some hardware extensions.

And a facility to load programs over the serial line, because I got tired of writing the same test programs all the time.



GOOD BASIC (2020)

Numeric expressions

Integers only (no floating point)

16-bit two's-complement (-32768 - 32767)

Correct order of operations

Comparators

Functions:

ABS: take absolute value of number

RND: random number generator

Note
The heart of it is the expression parser and evaluator.

Numeric stuff is fully represented.

The random number generator is actually a proper algorithm from a proper CS paper.



GOOD BASIC (2020)

String expressions

Concatenation operator

Ordered comparators

Functions:

LEFT/RIGHT/MID: take substrings

LEN: get length of string

INKEY: wait for keypress, return character

Note
Strings get a good workout too.

Can test strings for order, so you could write a sorter no problem.

There's some functions. INKEY is useful for interactive programs.



GOOD BASIC (2020)

Expressions

Variable expansion

Type-checked at parse time

Note
Obviously, anywhere you can use an operand you can use a variable.

All expressions are type-checked at parse time. This is a departure from most BASICs, which would only report type mismatches at runtime. But I found I have enough info during the parse to determine if you're trying to add a number to a string or that sort of thing, and reject it outright.

That extends to function arguments and return types as well.



GOOD BASIC (2020)

(it's good!)

Note
It's about 5000 lines of well-commented assembly, and about 5.5KB once assembled.

There's not much else to say really. I mean, there's tons more to say, I'd love to take you through it in detail but its kind of a lot.

I'm actually really proud of it.

Ask me for a link to the repo if you want to take a look.



Note
Here's a simple letter shuffling program. It exercises a surprising amount of the language, so it was a great test case.



Note
It's a bit prompt heavy, but eh.





Note
Importantly, the output matches what's in the book. That's the test suite.





Note
So having my own computer with my own BASIC was pretty neat, but I still wanted this thing to be able to do something. And it was still bugging me that I didn't have a workable display.

And I'm a sucker for flashing lights.

So, I ordered a bunch of display devices. For many good reasons, like seeing if they'd make a good computer display, and for learning more about different electrical interfaces.

But mostly, I'm a sucker for flashing lights.



Note
This is a 20x4 monochrome LCD display. It's a very popular device for hobby projects. It has two font sets, four programmable characters, support for a cursor, a backlight and so on. They were common in all sorts of appliances, phones, front panel displays, etc before hi-res pixel displays became widespread.



Note
On the back there's this little adapter module that makes it easier to use with a very small microcontroller. The standard driver chip for these kind of LCDs was designed in the late 80s and requires 12 data lines, which was no big deal back then when you just stuck it on a memory bus, but these days you might have a tiny controller chip, or multiple devices on a serial bus, and 12 lines would be prohibitive.

For whatever reason the driver chip has never been upgraded, so this little module presents an I2C serial bus interface to the rest of the system, and then drives the LCD chip from there. Unfortunately they didn't take the opportunity to improve the protocol, so its still a bit awkward to work with.



LCD initialisation

0x00  (1000ms)

0x30  (4500us)

0x30  (4500us)

0x30  (4500us)

0x20  (50us) (enable 4-bit mode)

0x28  (50us) (FUNCTION SET (0x2x), 2-line mode (0xx8))

0x0c  (50us) (DISPLAY CONTROL (0x08), display on (0x4))

0x01  (2000us) (CLEAR DISPLAY)

0x06  (50us) (ENTRY MODESET (0x4), ENTRYLEFT (0x2))

0x0a  (2000us) HOME

Note
When you boot up, you have to get it ready for work, which is a bit weird.

This is the initialisation sequence.

...



LCD character data

0x09  (50us) (select data register)

...  (50us) (send ASCII data)

Note
Actually sending data is straightforward by comparison. You send a "I'm gonna send data" command, and then just send it, one byte after another. Couldn't be simpler.



LCD character data

0x09  (50us) (select data register)

...  (50us) (send ASCII data)

AAAAAAAAAAAAAAAAAAAA

CCCCCCCCCCCCCCCCCCCC

BBBBBBBBBBBBBBBBBBBB

DDDDDDDDDDDDDDDDDDDD

Note
Except that this is actually the line layout. So when you stream data in, you've gotta get the order right.

This sort of weirdness is pretty much par for the course for these cute little devices and modules. Its about 50/50 whether you'll be able to get good documentation too, if you can get it all. Often it'll have critical timing info missing, or won't properly explain some sequence, or similar.

Fortunately there's a lot of manufacturers now targeting hobbyists specifically, and they're often shipping driver code for Arduino and other platforms, so at least there's a good chance you can find code that makes the thing work and copy from it. Debugging is tough though; the thing often either works or doesn't with no in between.



Note
I mentioned the I2C bus in passing before. This is a really common interface for these small devices and modules. Many CPUs have native support for this bus, and you only need two wires.

Each device on the bus has an 8-bit ID. The controller starts by sending the ID to the bus. Any devices that don't have that IDwill go to sleep, while the one that matches will send a "I'm here" response, and stay active so the controller can talk to it. When they're done, the controller lets go of bus control (tri-states the clock line), and the devices go back to waiting.

Fun fact: Linux on the Raspberry Pi has native support for this bus. So you can just plug these things into your Pi, and use the i2c tools to talk to them. A lot easier than my faffing around.



Note
This is a monochrome OLED module. It's 128x64 pixels. I say monochrome, even though there's two colours here, but the top 16 rows are fixed to yellow, the bottom 48 to blue.

It works a little bit like the LCD display. After initialisation, you stream bytes into it, but this time each byte represents eight pixels, one per bit.



0       8       10

0000000000000000...

1111111111111111...

2222222222222222...

3333333333333333...

4444444444444444...

5555555555555555...

6666666666666666...

7777777777777777...

80      88      90

0000000000000000...

1111111111111111...

2222222222222222...

3333333333333333...

4444444444444444...

5555555555555555...

6666666666666666...

7777777777777777...

Note
Once you send the "I'm sending data" command, the bytes you write work out like this. Each byte has eight vertical bits. So row 8 starts at the 128th byte.

This sort of thing is pretty normal. It's only in our heads that we say across then down; electrics and physics don't always play that way. I've seen weirder than this.

The interface presents a bit of a challenge though. You can't read back what's on the screen right now, so setting a single pixel is impossible. You can calculate the byte that its in, but you'd need to read the byte back, modify the single bit, then write it out.

But also, drawing is kinda hard - you want to a bunch of random memory access to move around your image.

So, the easiest thing to do is manage your own framebuffer in RAM, draw into it, and then write the whole lot out each time.



SWIRLY

GRAPHICS

Note
I'm a sucker for shiny things and blinky lights, remember!



Dots

Calculate buffer offset for pixel byte

Read it

Set the bit within it

Write the byte back

Note
So the first thing you need is something to plot a point. Everything else goes on top of this.

This is where the weird memory layout is dealt with.

It's like I said before: figure out which byte it is, read it, flip the bit, write it back out.



Dots

byte row: (y >> 3) * 128

byte column: x

bit: y & 7

Note
Calculate the row offset first. So for 0-7, the shift will just be 0, but for 8 its going to be 1, for 16, 2, etc.

The column is just adding the x offset.

And then the bits are ordered 0-7, so its just the bit number.



Dots

byte row: (y >> 3) * 128

byte column: x

bit: y & 7

char *p = buffer + ((y >> 3) * 128) + x;

*p |= (1 << (y & 7);

Note
In C, it'll end up looking like this.

And now you can draw a dot, you can draw other things made of dots.



Lines

(x1,y1) - (x2,y2)

y = mx + c

Note
Like lines!

What's a line? Just two points, with stuff in between.

Remember your high-school trigonometry? y = mx+c, where m is rise over run?

Well this works, but it sucks. Because division and multiplicaton is slow, and we can't work in fractional pixels.



Lines

Bresenham's algorithm

Note
What you want is a thing called Bresenham's algorithm.

Made a guy at IBM in the 60s.



Lines

Bresenham's algorithm

Note
I'm not going to try to explain it here, but I'll just fumble it. But the basic gist is that for every step you take in one axis, you figure out how much step you need to take in the other axis. Each time you don't take a step, you keep a count of the "error", or amount you didn't move, and when it goes over one, you roll it over and take a step.

That didn't make sense, I know. The point is, you can implement it entirely with integer math, and its fast.

There's versions of it for circles and other curves as well.



Note
So this you saw before, it was the simplest thing to get running. Just a canned list of points. Importantly, it stresses all the edge cases: zero slope (horizontal), infinite slope (vertical) and unit slope (45 degrees).

And then I went into my demoscene nostalgia and made some swirly bits.



Note
Rubbish light in this one, but you see what's happening. This is just rotating four points around the origin, advancing them each frame. Obviously you need sine and cosine for this, but I just cheated - I wrote a Perl script to calculate two tables and compiled them into the program.



Note
I like this one. It's actually similar to the last, drawing a quadrilateral, I've just moved the points much closer together and extended the range. Sine tables are super fun, you can do some really interesting things with them.



Note
While I was making that I found an interesting bug in my code, that presented this way. Super weird, because if you look at the text, it gets some weird half-offset each time it freaks out.

There's a lot happening here, and it actually took a couple of days to figure it all out. What's happening is that there's an overflow bug in my line math. I'm drawing directly into a memory buffer, but that memory space also has a bunch of CPU registers and other stuff in it. So I ended up writing outside of the frame buffer and off into register memory somewhere.

By sheer coincidence, I was writing into the register that controlled the watchdog reset. This is a failsafe function in AVRs. If enabled, you have to write to a register regularly (every 16ms) to say "I'm still here and working normally". If you don't, the watchdog fires and resets the processor. It's designed for embedded applications to ensure that they reset and keep running if something goes wrong, instead of just hanging. I normally have it off, but I was lucky enough to be turning it on. But I never wrote the "I am here" bit (because why would I), so the processor resets.

The first thing it does after reset is to initialise the display. This is actually a long sequence that I haven't shown, that among other things, sets up a scroll region (so you can do fancy smooth scrolling effects). But, at the time the CPU resets, the display is actually in the middle of receiving a data stream. It doesn't complete that stream properly when its initialisation sequence starts, which causes it to be miss-initialised.

The overflow was actually happening in an intermediate calculation, the final result of which was guaranteed to be in range, so I fixed it by reordering some operations. In the end it results in a loss of one bit of precision in the line stepping math, which means a line might take a step one pixel early or later than it should. No one will ever notice.



Note
Ok, I'm about done. There's lots I haven't told you because I just did so much stuff! But here's what I've got coming up.



Note
I also wrote an implementation of the Z-machine, the virtual machine used for the Infocom games. Its got just enough in there to run the original Zork. This is an older screenshot, with unimplemented stuff in it, but I did actually finish it and you can play a full game. I'd like to come back to it and add support for more games. It's kind of wild having an entire game in something the size of a matchbox.



Note
This is a tiny SD card module. I'd like to get it running so I can store BASIC programs and adventure games on it. It's kinda cool, for the most part it presents as a serial memory, so I could just use it as a big data stream. But it's not so useful if I can't drop files onto it from my laptop to bring them over to my little computer, which means I need a filesystem. I've implemented FAT32 before, but never in an 8-bit environment and never with so little working RAM available, so that'll be an interesting challenge.



Note
This is a Seeedstudio XIAO. I bought one, bricked it, then bought another which is still in the packet. It's tiny development board that is kind of the same concept as my computer, but this CPU is based on an ARM Cortex-M0. It's 32-bits with a lot more memory. I'd like to port my BASIC to it. Unfortunately ARM assembly is lot harder to get my head around, and there's really no good assembler available, so there's a lot of work to be done.



Note
This is a new thing, only a couple of months old, called the Keyboard Featherwing. Its a Blackberry 10 keyboard with a colour LCD screen. It's designed to be used with the Feather system, which is a series of development boards based around a ESP32 CPU. But, its all just I2C, and I keep imagining this inside a little 3D printed case, with my computer riding behind it, playing Zork or writing BASIC programs on the trains. It's silly, but I like it.




